标题:
stm32f103c8t6的GY_85模块测试源程序
[打印本页]
作者:
xiaoyuanhhh
时间:
2018-6-1 00:09
标题:
stm32f103c8t6的GY_85模块测试源程序
stm32f103c8t6的GY_85模块测试程序已测试,实用
单片机源程序如下:
#include "stm32f10x.h"
#include "delay.h"
#include "../HARDWARE/OLED/oled.h"
#include <math.h>
#define uchar unsigned char
#define uint unsigned int
#define OSS 0 // BMP085使用
//L3G4200D内部寄存器
#define CTRL_REG1 0x20
#define CTRL_REG2 0x21
#define CTRL_REG3 0x22
#define CTRL_REG4 0x23
#define CTRL_REG5 0x24
#define OUT_X_L 0x28
#define OUT_X_H 0x29
#define OUT_Y_L 0x2A
#define OUT_Y_H 0x2B
#define OUT_Z_L 0x2C
#define OUT_Z_H 0x2D
//定义器件在IIC总线中的从地址,根据ALT ADDRESS地址引脚不同修改
#define HMC5883L_Addr 0x3C //磁场传感器器件地址
#define ADXL345_Addr 0xA6 //加速度传感器器件地址
#define BMP085_Addr 0xee //气压传感器器件地址
#define L3G4200_Addr 0xD2 //陀螺仪传感器器件地址
unsigned char BUF[8]; //接收数据缓存区
char test=0;
int x,y;
float angle;
uchar ge,shi,bai,qian,wan,shiwan; //显示变量
int A_X,A_Y,A_Z;
short T_X,T_Y,T_Z;
short data_xyz[3];
float Roll,Pitch,Q,T,K;
//***BMP085使用
short ac1;
short ac2;
short ac3;
unsigned short ac4;
unsigned short ac5;
unsigned short ac6;
short b1;
short b2;
short mb;
short mc;
short md;
long temperature;
long pressure;
//********
//************************************++++++++++++++++++++++++++++++++
/*模拟IIC端口输出输入定义*/
#define SCL_H GPIOB->BSRR = GPIO_Pin_6
#define SCL_L GPIOB->BRR = GPIO_Pin_6
#define SDA_H GPIOB->BSRR = GPIO_Pin_7
#define SDA_L GPIOB->BRR = GPIO_Pin_7
#define SCL_read GPIOB->IDR & GPIO_Pin_6
#define SDA_read GPIOB->IDR & GPIO_Pin_7
/* 函数申明 -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void USART1_Configuration(void);
void USART2_Configuration(void);
void USART3_Configuration(void);
void USART4_Configuration(void);
void USART5_Configuration(void);
void WWDG_Configuration(void);
void Delay(u32 nTime);
void Delayms(vu32 m);
void conversion(long temp_data);
void adxl345_angle(void);
/* 变量定义 ----------------------------------------------*/
//***************************************************
void conversion(long temp_data)
{
shiwan=temp_data/100000+0x30 ;
temp_data=temp_data%100000; //取余运算
wan=temp_data/10000+0x30 ;
temp_data=temp_data%10000; //取余运算
qian=temp_data/1000+0x30 ;
temp_data=temp_data%1000; //取余运算
bai=temp_data/100+0x30 ;
temp_data=temp_data%100; //取余运算
shi=temp_data/10+0x30 ;
temp_data=temp_data%10; //取余运算
ge=temp_data+0x30;
}
/*******************************************************************************
* Function Name : I2C_GPIO_Config
* Description : Configration Simulation IIC GPIO
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : I2C_delay
* Description : Simulation IIC Timing series delay
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_delay(void)
{
u8 i=30; //这里可以优化速度 ,经测试最低到5还能写入
while(i)
{
i--;
}
}
void delay5ms(void)
{
int i=5000;
while(i)
{
i--;
}
}
/*******************************************************************************
* Function Name : I2C_Start
* Description : Master Start Simulation IIC Communication
* Input : None
* Output : None
* Return : Wheather Start
****************************************************************************** */
int I2C_Start(void)
{
SDA_H;
SCL_H;
I2C_delay();
if(!SDA_read)return 0; //SDA线为低电平则总线忙,退出
SDA_L;
I2C_delay();
if(SDA_read) return 0; //SDA线为高电平则总线出错,退出
SDA_L;
I2C_delay();
return 1;
}
/*******************************************************************************
* Function Name : I2C_Stop
* Description : Master Stop Simulation IIC Communication
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Stop(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SDA_H;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_Ack
* Description : Master Send Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Ack(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_NoAck
* Description : Master Send No Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_NoAck(void)
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_WaitAck
* Description : Master Reserive Slave Acknowledge Single
* Input : None
* Output : None
* Return : Wheather Reserive Slave Acknowledge Single
****************************************************************************** */
int I2C_WaitAck(void) //返回为:=1有ACK,=0无ACK
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
SCL_L;
I2C_delay();
return 0;
}
SCL_L;
I2C_delay();
return 1;
}
/*******************************************************************************
* Function Name : I2C_SendByte
* Description : Master Send a Byte to Slave
* Input : Will Send Date
* Output : None
* Return : None
****************************************************************************** */
void I2C_SendByte(u8 SendByte) //数据从高位到低位//
{
u8 i=8;
while(i--)
{
SCL_L;
I2C_delay();
if(SendByte&0x80)
SDA_H;
else
SDA_L;
SendByte<<=1;
I2C_delay();
SCL_H;
I2C_delay();
}
SCL_L;
}
/*******************************************************************************
* Function Name : I2C_RadeByte
* Description : Master Reserive a Byte From Slave
* Input : None
* Output : None
* Return : Date From Slave
****************************************************************************** */
unsigned char I2C_RadeByte(void) //数据从高位到低位//
{
u8 i=8;
u8 ReceiveByte=0;
SDA_H;
while(i--)
{
ReceiveByte<<=1;
SCL_L;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
ReceiveByte|=0x01;
}
}
SCL_L;
return ReceiveByte;
}
//ZRX
//单字节写入*******************************************
int Single_Write(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char REG_data) //void
{
if(!I2C_Start())return 0;
I2C_SendByte(SlaveAddress); //发送设备地址+写信号//I2C_SendByte(((REG_Address & 0x0700) >>7) | SlaveAddress & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop(); return 0;}
I2C_SendByte(REG_Address ); //设置低起始地址
I2C_WaitAck();
I2C_SendByte(REG_data);
I2C_WaitAck();
I2C_Stop();
delay5ms();
return 1;
}
//单字节读取*****************************************
unsigned char Single_Read(unsigned char SlaveAddress,unsigned char REG_Address)
{ unsigned char REG_data;
if(!I2C_Start())return 0;
I2C_SendByte(SlaveAddress); //I2C_SendByte(((REG_Address & 0x0700) >>7) | REG_Address & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop();test=1; return 0;}
I2C_SendByte((u8) REG_Address); //设置低起始地址
I2C_WaitAck();
I2C_Start();
I2C_SendByte(SlaveAddress+1);
I2C_WaitAck();
REG_data= I2C_RadeByte();
I2C_NoAck();
I2C_Stop();
//return TRUE;
return REG_data;
}
/*
********************************************************************************
** 函数名称 : RCC_Configuration(void)
** 函数功能 : 时钟初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
}
/* Enable GPIOA, GPIOB, GPIOC, GPIOD, GPIOE, GPIOF, GPIOG and AFIO clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG | RCC_APB2Periph_AFIO , ENABLE);
}
/*
********************************************************************************
** 函数名称 : GPIO_Configuration(void)
** 函数功能 : 端口初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD, ENABLE );
/* Configure USART1 Tx (PA.09) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; // 选中管脚9
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOA, &GPIO_InitStructure); // 选择A端口
/* Configure USART1 Rx (PA.10) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //选中管脚10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //选择A端口
/* Configure USART2 Tx (PA.02) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // 选中管脚2
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOA, &GPIO_InitStructure); // 选择A端口
/* Configure USART2 Rx (PA.03) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; //选中管脚3
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //选择A端口
/* Configure USART3 Tx (PB.10) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; // 选中管脚10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOB, &GPIO_InitStructure); // 选择B端口
/* Configure USART3 Rx (PB.11) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //选中管脚11
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOB, &GPIO_InitStructure); //选择B端口
/* Configure USART4 Tx (PC.10) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; // 选中管脚10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOC, &GPIO_InitStructure); // 选择C端口
/* Configure USART4 Rx (PC.11) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //选中管脚11
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOC, &GPIO_InitStructure); //选择C端口
/* Configure USART5 Tx (PC.12) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; // 选中管脚12
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOC, &GPIO_InitStructure); // 选择C端口
/* Configure USART5 Rx (PD.2) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //选中管脚2
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOD, &GPIO_InitStructure); //选择D端口
}
/*
********************************************************************************
** 函数名称 : USART1_Configuration(void)
** 函数功能 : 串口1初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void USART1_Configuration(void)
{
USART_InitTypeDef USART_InitStructure;
USART_ClockInitTypeDef USART_ClockInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 |RCC_APB2Periph_USART1, ENABLE );
USART_ClockInitStructure.USART_Clock = USART_Clock_Disable; // 时钟低电平活动
USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low; // 时钟低电平
USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; // 时钟第二个边沿进行数据捕获
USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable; // 最后一位数据的时钟脉冲不从SCLK输出
/* Configure the USART1 synchronous paramters */
USART_ClockInit(USART1, &USART_ClockInitStructure); // 时钟参数初始化设置
USART_InitStructure.USART_BaudRate = 115200; // 波特率为:115200
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 8位数据
USART_InitStructure.USART_StopBits = USART_StopBits_1; // 在帧结尾传输1个停止位
USART_InitStructure.USART_Parity = USART_Parity_No ; // 奇偶失能
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 硬件流控制失能
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; // 发送使能+接收使能
/* Configure USART1 basic and asynchronous paramters */
USART_Init(USART1, &USART_InitStructure);
/* Enable USART1 */
USART_ClearFlag(USART1, USART_IT_RXNE); //清中断,以免一启用中断后立即产生中断
USART_ITConfig(USART1,USART_IT_RXNE, ENABLE); //使能USART1中断源
USART_Cmd(USART1, ENABLE); //USART1总开关:开启
}
/*
********************************************************************************
** 函数名称 : Delay(vu32 nCount)
** 函数功能 : 延时函数
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delay(vu32 nCount)
{
for(; nCount != 0; nCount--);
}
/*
********************************************************************************
** 函数名称 : void Delayms(vu32 m)
** 函数功能 : 长延时函数 m=1,延时1ms
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delayms(vu32 m)
{
u32 i;
for(; m != 0; m--)
for (i=0; i<50000; i++);
}
//************************************************
void USART1_SendData(uchar SendData)
{
USART_SendData(USART1, SendData);
Delayms(1);
}
//********************************************************************
long bmp085ReadTemp(void)
{ short temp_ut;
Single_Write(BMP085_Addr,0xF4,0x2E);
Delayms(5); // max time is 4.5ms
temp_ut = Single_Read(BMP085_Addr,0xF6);
temp_ut = (temp_ut<<8)| Single_Read(BMP085_Addr,0xF7);
return (long) temp_ut ;
}
//*************************************************************
long bmp085ReadPressure(void)
{
long pressure = 0;
Single_Write(BMP085_Addr,0xF4,0x34);
Delayms(5); // max time is 4.5ms
pressure = Single_Read(BMP085_Addr,0xF6);
pressure = (pressure<<8)| Single_Read(BMP085_Addr,0xF7);
pressure &= 0x0000FFFF;
return pressure;
}
//******************
void Send_ADXL345_data(int dis_data)
{ float temp ;
if(dis_data>0x7fff)dis_data-=0xffff;
if(dis_data<0){
dis_data=-dis_data;
USART_SendData(USART1,'-');
Delayms(2);
}
else
{
USART_SendData(USART1,'+');
Delayms(2);
}
temp=(float)dis_data*3.9; //计算数据和显示,查考ADXL345快速入门第4页
conversion(temp); //转换出显示需要的数据
USART1_SendData(qian);
USART1_SendData('.');
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData(ge);
USART1_SendData('g');
}
//***************************************
//******************
void Send_L3G420D_data(short dis_data)
{ float temp ;
if(dis_data<0){
dis_data=-dis_data;
USART_SendData(USART1,'-');
Delayms(2);
}
else
{
USART_SendData(USART1,'+');
Delayms(2);
}
temp=(float)dis_data*0.07; //计算数据和显示,查考ADXL345快速入门第4页
conversion(temp); //转换出显示需要的数据
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData(ge);
}
//***************************************
void Send_HMC5883L()
{
USART1_SendData('H');
USART1_SendData('M');
USART1_SendData('C');
USART1_SendData('5');
USART1_SendData('8');
USART1_SendData('8');
USART1_SendData('3');
USART1_SendData('L');
USART1_SendData(':');
conversion(angle);
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData(ge);
USART1_SendData('`');
USART1_SendData(0x0d);
USART1_SendData(0x0a);
}
//*************************************************
void Send_BMP085()
{
USART1_SendData('B');
USART1_SendData('M');
USART1_SendData('P');
USART1_SendData('0');
USART1_SendData('8');
USART1_SendData('5');
USART1_SendData(':');
USART1_SendData('t');
USART1_SendData('=');
conversion(temperature);
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData('.');
USART1_SendData(ge);
USART1_SendData('`');
USART1_SendData('C');
USART1_SendData(' ');
USART1_SendData('p');
USART1_SendData('=');
conversion(pressure);
USART1_SendData(shiwan);
USART1_SendData(wan);
USART1_SendData(qian);
USART1_SendData('.');
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData(ge);
USART1_SendData('K');
USART1_SendData('p');
USART1_SendData('a');
USART1_SendData(0x0d);
USART1_SendData(0x0a);
}
//*****************************************************
void Send_ADXL345()
{
USART1_SendData('A');
USART1_SendData('D');
USART1_SendData('X');
USART1_SendData('L');
USART1_SendData('3');
USART1_SendData('4');
USART1_SendData('5');
USART1_SendData(':');
USART1_SendData('X');
USART1_SendData('=');
Send_ADXL345_data(A_X);
USART1_SendData('Y');
USART1_SendData('=');
Send_ADXL345_data(A_Y);
USART1_SendData('Z');
USART1_SendData('=');
Send_ADXL345_data(A_Z);
adxl345_angle();
USART1_SendData(0x0d);
USART1_SendData(0x0a);
}
//*****************************************************
void Send_L3G4200D()
{
USART1_SendData('L');
USART1_SendData('3');
USART1_SendData('G');
USART1_SendData('4');
USART1_SendData('2');
USART1_SendData('0');
USART1_SendData('0');
USART1_SendData('D');
USART1_SendData(':');
USART1_SendData('X');
USART1_SendData('=');
Send_L3G420D_data(T_X);
USART1_SendData('Y');
USART1_SendData('=');
Send_L3G420D_data(T_Y);
USART1_SendData('Z');
USART1_SendData('=');
Send_L3G420D_data(T_Z);
USART1_SendData(0x0d);
USART1_SendData(0x0a);
}
//******************************************************
void read_hmc5883l(void)
{
Single_Write(HMC5883L_Addr,0x00,0x14); //
Single_Write(HMC5883L_Addr,0x02,0x00); //
Delayms(10);
BUF[1]=Single_Read(HMC5883L_Addr,0x03);//OUT_X_L_A
BUF[2]=Single_Read(HMC5883L_Addr,0x04);//OUT_X_H_A
BUF[3]=Single_Read(HMC5883L_Addr,0x07);//OUT_Y_L_A
BUF[4]=Single_Read(HMC5883L_Addr,0x08);//OUT_Y_H_A
x=(BUF[1] << 8) | BUF[2]; //Combine MSB and LSB of X Data output register
y=(BUF[3] << 8) | BUF[4]; //Combine MSB and LSB of Z Data output register
if(x>0x7fff)x-=0xffff;
if(y>0x7fff)y-=0xffff;
angle= atan2(y,x) * (180 / 3.14159265) + 180; // angle in degrees
}
//****************************************
void read_ADXL345(void)
{
BUF[0]=Single_Read(ADXL345_Addr,0x32);//OUT_X_L_A
BUF[1]=Single_Read(ADXL345_Addr,0x33);//OUT_X_H_A
BUF[2]=Single_Read(ADXL345_Addr,0x34);//OUT_Y_L_A
BUF[3]=Single_Read(ADXL345_Addr,0x35);//OUT_Y_H_A
BUF[4]=Single_Read(ADXL345_Addr,0x36);//OUT_Z_L_A
BUF[5]=Single_Read(ADXL345_Addr,0x37);//OUT_Z_H_A
A_X=(BUF[1]<<8)+BUF[0]; //合成数据
A_Y=(BUF[3]<<8)+BUF[2]; //合成数据
A_Z=(BUF[5]<<8)+BUF[4]; //合成数据
}
//*****************************************
void read_BMP085(void)
{
long ut;
long up;
long x1, x2, b5, b6, x3, b3, p;
unsigned long b4, b7;
ut = bmp085ReadTemp(); // 读取温度
// ut = bmp085ReadTemp(); // 读取温度
up = bmp085ReadPressure(); // 读取压强
// up = bmp085ReadPressure(); // 读取压强
x1 = ((long)ut - ac6) * ac5 >> 15;
x2 = ((long) mc << 11) / (x1 + md);
b5 = x1 + x2;
temperature = (b5 + 8) >> 4;
//****************
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
b3 = (((long)ac1 * 4 + x3) + 2)/4;
x1 = ac3 * b6 >> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (unsigned long) (x3 + 32768)) >> 15;
b7 = ((unsigned long) up - b3) * (50000 >> OSS);
if( b7 < 0x80000000)
p = (b7 * 2) / b4 ;
else
p = (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
pressure = p + ((x1 + x2 + 3791) >> 4);
}
//***************************
void Init_ADXL345(void)
{
Single_Write(ADXL345_Addr,0x31,0x0B); //测量范围,正负16g,13位模式
// Single_Write(ADXL345_Addr,0x2C,0x0e); //速率设定为100hz 参考pdf13页
Single_Write(ADXL345_Addr,0x2D,0x08); //选择电源模式 参考pdf24页
Single_Write(ADXL345_Addr,0x2E,0x80); //使能 DATA_READY 中断
// Single_Write(ADXL345_Addr,0x1E,0x00); //X 偏移量 根据测试传感器的状态写入pdf29页
// Single_Write(ADXL345_Addr,0x1F,0x00); //Y 偏移量 根据测试传感器的状态写入pdf29页
// Single_Write(ADXL345_Addr,0x20,0x05); //Z 偏移量 根据测试传感器的状态写入pdf29页
}
//****************************
void Init_BMP085(void)
{
ac1 = Single_Read(BMP085_Addr,0xAA);
ac1 = (ac1<<8)|Single_Read(BMP085_Addr,0xAB);
ac2 = Single_Read(BMP085_Addr,0xAC);
ac2 = (ac2<<8)| Single_Read(BMP085_Addr,0xAD);
ac3 = Single_Read(BMP085_Addr,0xAE);
ac3 = (ac3<<8)| Single_Read(BMP085_Addr,0xAF);
ac4 = Single_Read(BMP085_Addr,0xB0);
ac4 = (ac4<<8)| Single_Read(BMP085_Addr,0xB1);
ac5 = Single_Read(BMP085_Addr,0xB2);
ac5 = (ac5<<8)| Single_Read(BMP085_Addr,0xB3);
ac6 = Single_Read(BMP085_Addr,0xB4);
ac6 = (ac6<<8)| Single_Read(BMP085_Addr,0xB5);
b1 = Single_Read(BMP085_Addr,0xB6);
b1 = (b1<<8)| Single_Read(BMP085_Addr,0xB7);
b2 = Single_Read(BMP085_Addr,0xB8);
b2 = (b2<<8)| Single_Read(BMP085_Addr,0xB9);
mb = Single_Read(BMP085_Addr,0xBA);
mb = (mb<<8)| Single_Read(BMP085_Addr,0xBB);
mc = Single_Read(BMP085_Addr,0xBC);
mc = (mc<<8)| Single_Read(BMP085_Addr,0xBD);
md = Single_Read(BMP085_Addr,0xBE);
md = (md<<8)| Single_Read(BMP085_Addr,0xBF);
}
//****************************
void Init_HMC5883L()
{
Single_Write(HMC5883L_Addr,0x00,0x14); //
Single_Write(HMC5883L_Addr,0x02,0x00); //
}
//*****************************************
//************初始化L3G4200D*********************************
void Init_L3G4200D(void)
{
Single_Write(L3G4200_Addr,CTRL_REG1, 0x0f);
Single_Write(L3G4200_Addr,CTRL_REG2, 0x00);
Single_Write(L3G4200_Addr,CTRL_REG3, 0x08);
Single_Write(L3G4200_Addr,CTRL_REG4, 0x30); //+-2000dps
Single_Write(L3G4200_Addr,CTRL_REG5, 0x00);
}
//******读取L3G4200D数据****************************************
void read_L3G4200D(void)
{
BUF[0]=Single_Read(L3G4200_Addr,OUT_X_L);
BUF[1]=Single_Read(L3G4200_Addr,OUT_X_H);
T_X= (BUF[1]<<8)|BUF[0];
BUF[2]=Single_Read(L3G4200_Addr,OUT_Y_L);
BUF[3]=Single_Read(L3G4200_Addr,OUT_Y_H);
T_Y= (BUF[3]<<8)|BUF[2];
BUF[4]=Single_Read(L3G4200_Addr,OUT_Z_L);
BUF[5]=Single_Read(L3G4200_Addr,OUT_Z_H);
T_Z= (BUF[5]<<8)|BUF[4];
}
//******************ADXL345计算倾斜角度************
void adxl345_angle(void)
{
data_xyz[0]=A_X; //合成数据
data_xyz[1]=A_Y; //合成数据
data_xyz[2]=A_Z; //合成数据
//分别是加速度X,Y,Z的原始数据,10位的
Q=(float)data_xyz[0]*3.9;
T=(float)data_xyz[1]*3.9;
K=(float)data_xyz[2]*3.9;
Q=-Q;
Roll=(float)(((atan2(K,Q)*180)/3.14159265)+180); //X轴角度值
Pitch=(float)(((atan2(K,T)*180)/3.14159265)+180); //Y轴角度值
//conversion(Pitch); //需要显示时候请更换
conversion(Roll);
USART1_SendData(' ');
USART1_SendData(' ');
USART1_SendData(bai);
USART1_SendData(shi);
USART1_SendData(ge);
}
/*
********************************************************************************
** 函数名称 : main(void)
** 函数功能 : 主函数
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
int main(void)
{
RCC_Configuration();
GPIO_Configuration();
USART1_Configuration();
I2C_GPIO_Config();
Init_HMC5883L();
Init_ADXL345();
Init_BMP085();
Init_L3G4200D(); //初始化L3G4200D
while(1)
{
read_hmc5883l();
Send_HMC5883L();
read_ADXL345();
Send_ADXL345();
read_L3G4200D();
Send_L3G4200D();
read_BMP085();
Send_BMP085();
Delayms(20);
}
}
/*************结束***************/
复制代码
所有资料51hei提供下载:
GY-85-C8T6.rar
(293.39 KB, 下载次数: 36)
2018-6-1 03:32 上传
点击文件名下载附件
STM32F103C8T6
下载积分: 黑币 -5
欢迎光临 (http://www.51hei.com/bbs/)
Powered by Discuz! X3.1