标题:
基于STM32 NUCLEO板设计彩色LED照明灯(纯cubeMX开发)
[打印本页]
作者:
stc89c52wzy
时间:
2020-4-16 22:43
标题:
基于STM32 NUCLEO板设计彩色LED照明灯(纯cubeMX开发)
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
#include "stdbool.h"
#include "string.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
void scheduler( void );
bool serial2_in(uint8_t *pchByte);
bool serial2_out(uint8_t chByte) ;
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_3);
/* USER CODE END 2 */
/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
{
scheduler();
}
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_HSI;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
__SYSCFG_CLK_ENABLE();
}
/* TIM2 init function */
void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 1875;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 256;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM_PWM_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 80;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
sConfigOC.Pulse = 160;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2);
sConfigOC.Pulse = 240;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3);
}
/* USART2 init function */
void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;//38400;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONEBIT_SAMPLING_DISABLED ;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
HAL_UART_Init(&huart2);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__GPIOC_CLK_ENABLE();
__GPIOF_CLK_ENABLE();
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA5 */
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
//! \name finit state machine state
//! @{
typedef enum {
fsm_rt_err = -1, //!< fsm error, error code can be get from other interface
fsm_rt_cpl = 0, //!< fsm complete
fsm_rt_on_going = 1, //!< fsm on-going
} fsm_rt_t;
//! @}
static uint8_t analysis_val(uint8_t chValH, uint8_t chValL);
static void adjust(void);
static fsm_rt_t task_receive(void);
static fsm_rt_t task_adjust(void);
static fsm_rt_t task_delay(void);
static fsm_rt_t delay(void);
static bool s_bFlag = false;
static bool s_bRgbUpdataFlag = false;
static uint8_t s_chRVal = 0;
static uint8_t s_chGVal = 0;
static uint8_t s_chBVal = 0;
/****************************************************************************/
/**
* Function Name: void scheduler( void )
* Description: none
*
* Param: none
* Return: none
* Author:
****************************************************************************/
void scheduler( void )
{
uint8_t chByte;
while(!serial2_out('S'));
while(!serial2_out('m'));
while(!serial2_out('a'));
while(!serial2_out('r'));
while(!serial2_out('t'));
while(!serial2_out('L'));
while(!serial2_out('E'));
while(!serial2_out('D'));
while(!serial2_out('\r'));
while(!serial2_out('\n'));
/* loop here forever */
while(1){
// if (serial2_in(&chByte)) {
// serial2_out(chByte);
// }
task_receive();
task_adjust();
//task_delay();
}
}
#define TASK_RECEIVE_RESET_FSM() \
do{ \
s_tState = START;\
}while(0)
static fsm_rt_t task_receive(void)
{
static uint8_t s_chLedVal[8];
static uint8_t s_chLedInd = 0;
static uint32_t s_wReceiveCounter = 0x2ffff;
static enum{
START=0,
IDLE,
RECEIVE,
ANALYSIS
}s_tState = START;
switch (s_tState){
case START:
s_chLedVal[0] = 0x00;
s_chLedVal[1] = 0x00;
s_chLedVal[2] = 0x00;
s_chLedVal[3] = 0x00;
s_chLedVal[4] = 0x00;
s_chLedVal[5] = 0x00;
s_chLedVal[6] = 0x00;
s_chLedVal[7] = 0x00;
s_chLedInd = 0;
s_wReceiveCounter = 0x2ffff;
s_tState = IDLE;
case IDLE:
if(serial2_in(&s_chLedVal[s_chLedInd])){
if('*'==s_chLedVal[s_chLedInd]){/*'*' is start mark*/
s_chLedInd++;
s_tState = RECEIVE;
}else{
s_tState = IDLE;
}
}
break;
case RECEIVE:
if(serial2_in(&s_chLedVal[s_chLedInd])){
if('#'==s_chLedVal[s_chLedInd]){/*'#' is end mark*/
if(7 == s_chLedInd){/*verify length */
s_tState = ANALYSIS;
}else{
s_tState = START;
}
}
s_chLedInd++;
}
/*time out*/
s_wReceiveCounter--;
if(0 == s_wReceiveCounter){
TASK_RECEIVE_RESET_FSM();
}
break;
case ANALYSIS:
s_chRVal = analysis_val(s_chLedVal[1],s_chLedVal[2]);
s_chGVal = analysis_val(s_chLedVal[3],s_chLedVal[4]);
s_chBVal = analysis_val(s_chLedVal[5],s_chLedVal[6]);
s_bRgbUpdataFlag = true;
TASK_RECEIVE_RESET_FSM();
return fsm_rt_cpl;
}
return fsm_rt_on_going;
}
static uint8_t analysis_val(uint8_t chValH, uint8_t chValL)
{
uint8_t chVal = 0;
if((chValH >= 48) && (chValH <= 57)){/*'0'~'9'*/
chVal = (chValH-48)<<4;
}else if((chValH >= 65) && (chValH <= 70)){/*'A'~'F'*/
chVal = (chValH-55)<<4;
}
if((chValL >= 48) && (chValL <= 57)){/*'0'~'9'*/
chVal |= chValL-48;
}else if((chValH >= 65) && (chValH <= 70)){/*'A'~'F'*/
chVal |= chValL-55;
}
return chVal;
}
#define TASK_ADJUST_RESET_FSM() \
do{ \
s_tState = START;\
}while(0)
static fsm_rt_t task_adjust(void)
{
static enum{
START=0,
IDLE,
ADJUST
}s_tState = START;
switch(s_tState){
case START:
s_tState = IDLE;
case IDLE:
if(s_bRgbUpdataFlag){
s_bRgbUpdataFlag = false;
s_tState = ADJUST;
}
break;
case ADJUST:
adjust();
while(!serial2_out('O'));
while(!serial2_out('K'));
while(!serial2_out('\r'));
while(!serial2_out('\n'));
TASK_ADJUST_RESET_FSM();
return fsm_rt_cpl;
}
return fsm_rt_on_going;
}
static void adjust(void)
{
TIM_OC_InitTypeDef sConfigOC;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.Pulse = s_chRVal;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
sConfigOC.Pulse = s_chGVal;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2);
sConfigOC.Pulse = s_chBVal;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_3);
}
#define TASK_DELAY_RESET_FSM() \
do{ \
s_tTaskDelayState = TASK_DELAY_START; \
}while(0)
static fsm_rt_t task_delay(void)
{
static enum{
TASK_DELAY_START=0,
TASK_DELAY_ING
}s_tTaskDelayState = TASK_DELAY_START;
switch(s_tTaskDelayState){
case TASK_DELAY_START:
s_bFlag = false;
case TASK_DELAY_ING:
if(fsm_rt_cpl == delay()){
s_bFlag = true;
TASK_DELAY_RESET_FSM();
return fsm_rt_on_going;
}
}
return fsm_rt_on_going;
}
#define DELAY_RESET_FSM() \
do{ \
s_tDelaytState = DELAY_START; \
}while(0)
#define DEALY_TIME (0xff)
static fsm_rt_t delay(void)
{
static enum{
DELAY_START = 0,
DELAY
}s_tDelaytState = DELAY_START;
static uint32_t s_wDelayCounter = 0;
switch(s_tDelaytState){
case DELAY_START:
s_wDelayCounter = 0;
s_tDelaytState = DELAY;
case DELAY:
s_wDelayCounter ++;
if(s_wDelayCounter > DEALY_TIME){
s_wDelayCounter = 0;
DELAY_RESET_FSM();
return fsm_rt_cpl;
}
break;
}
return fsm_rt_on_going;
}
bool serial2_out(uint8_t chByte)
{
bool bUartState;
if(HAL_UART_Transmit(&huart2,&chByte,1,10) == HAL_OK){
bUartState = true;
}else{
bUartState = false;
}
return bUartState;
}
bool serial2_in(uint8_t *pchByte)
{
bool bUartState;
if(0 == pchByte){
bUartState = false;
}else{
if(HAL_UART_Receive(&huart2,pchByte,1,0x1fffff) == HAL_OK){
bUartState = true;
}else{
bUartState = false;
}
}
return bUartState;
}
/* USER CODE END 4 */
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
复制代码
基于STM32 NUCLEO板设计彩色LED照明灯(纯cubeMX开发).7z
2020-4-17 14:54 上传
点击文件名下载附件
下载积分: 黑币 -5
4.93 MB, 下载次数: 7, 下载积分: 黑币 -5
作者:
admin
时间:
2020-4-17 16:48
本帖需要重新编辑补全电路原理图,源码,详细说明与图片即可获得100+黑币(帖子下方有编辑按钮)
欢迎光临 (http://www.51hei.com/bbs/)
Powered by Discuz! X3.1