标题:
SI24R1示例代码与通信异常问题集锦
[打印本页]
作者:
francisliu
时间:
2024-4-24 10:13
标题:
SI24R1示例代码与通信异常问题集锦
Si24R1通信异常问题集锦
2.4G通信异常一般都有如下问题,
一次也不能收到数据
(初诊:硬件接线和软件配置问题)
2、在发射端或接收端重新上电的时候,可接收到一次
(初诊:没有及时清空RX FIFO和接收中断标志)
3、由发送模式切换为接收模式后,就不能接收了
(初诊:没有及时清空TX FIFO,RX FIFO和接收中断标志)
4、设置高功率等级之后,就不能接收了
(初诊:供电电流不足)
5、无规律偶发不能接收
(初诊:存在电源干扰)
6、通信距离短,远距离容易丢包,
(初诊:硬件结构和PCB设计影响了天线净空区,造成了信号衰减)7、接收数据后,进入待机模式下,功耗比较大,达到了mA级
(初诊:CE脚没有被拉低)
8、一发多收的时候,存在丢包问题
(初诊:广播通信数量过多的情况下,需要设置更高的信道,适当调整发包间隔
SI24R1驱动程序:
SI24R1.c文件内容:
#include "SI24R1.h"
#include "delay.h"
u8 TX_ADDRESS[TX_ADR_WIDTH] = {0x0A,0x01,0x07,0x0E,0x01};
/*SPI读写字节函数*/
static u8 SPI_RW(u8 byte)
{
u8 bit_ctr;
for(bit_ctr=0; bit_ctr<8; bit_ctr++) //轮询8位
{
if(byte & 0x80) MOSI = 1; //判断如果最高位是高电平,输出高电平
else MOSI = 0; //反之输出低电平
byte = (byte << 1); //左移
SCK = 1; //SCK为高
byte |= MISO; //字节值按位或(相加)
SCK = 0; //SCK为低
}
return(byte); //返回字节和
}
/*SPI IO初始化函数*/
void SI24R1_Init(void)
{
SCK = 0; //SCK(SPI)时钟引脚拉低
CSN = 1; //CSN片选引脚拉高
CE = 0; //CE脚拉低,待机准备状态
IRQ = 1; //中断引脚拉高,低电平有效
}
/*SPI写寄存器函数*/
u8 SI24R1_Write_Reg(u8 reg, u8 value)
{
u8 status;
CSN = 0; //CSN片选引脚拉低
status = SPI_RW(reg); //返回写的寄存器值
SPI_RW(value);//写值
CSN = 1; //CSN片选引脚拉高
return(status);
}
/*SPI写数据函数*/
u8 SI24R1_Write_Buf(u8 reg, const u8 *pBuf, u8 bytes)
{
u8 status,byte_ctr;
CSN = 0; //CSN片选引脚拉低
status = SPI_RW(reg);//返回写的寄存器值
for(byte_ctr=0; byte_ctr<bytes; byte_ctr++) //数据遍历写入
SPI_RW(*pBuf++);
CSN = 1; //CSN片选引脚拉高
return(status);
}
/*SPI读寄存器函数*/
u8 SI24R1_Read_Reg(u8 reg)
{
u8 value;
CSN = 0;
SPI_RW(reg);
value = SPI_RW(0);//读寄存器值
CSN = 1;
return(value);
}
/*SPI读数据函数*/
u8 SI24R1_Read_Buf(u8 reg, u8 *pBuf, u8 bytes)
{
u8 status,byte_ctr;
CSN = 0;
status = SPI_RW(reg);
for(byte_ctr=0;byte_ctr<bytes;byte_ctr++)
pBuf[byte_ctr] = SPI_RW(0); //读数据内容
CSN = 1;
return(status);
}
/*设置接收模式*/
void SI24R1_RX_Mode(void)
{
CE = 0;
SI24R1_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
SI24R1_Write_Reg(WRITE_REG + EN_AA, 0x01);
SI24R1_Write_Reg(WRITE_REG + EN_RXADDR, 0x01);
SI24R1_Write_Reg(WRITE_REG + RF_CH, 40);
SI24R1_Write_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH);
SI24R1_Write_Reg(WRITE_REG + RF_SETUP, 0x0f);
SI24R1_Write_Reg(WRITE_REG + CONFIG, 0x0f);
SI24R1_Write_Reg(WRITE_REG + STATUS, 0xff);
CE = 1;
}
/*设置发射模式*/
void SI24R1_TX_Mode(void)
{
CE = 0;
SI24R1_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); ·
SI24R1_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
SI24R1_Write_Reg(WRITE_REG + EN_AA, 0x01);
SI24R1_Write_Reg(WRITE_REG + EN_RXADDR, 0x01);
SI24R1_Write_Reg(WRITE_REG + SETUP_RETR, 0x0a);
SI24R1_Write_Reg(WRITE_REG + RF_CH, 40);
SI24R1_Write_Reg(WRITE_REG + RF_SETUP, 0x0f);
SI24R1_Write_Reg(WRITE_REG + CONFIG, 0x0e);
}
/*收包函数*/
u8 SI24R1_RxPacket(u8 *rxbuf)
{
u8 state;
state = SI24R1_Read_Reg(STATUS);
SI24R1_Write_Reg(WRITE_REG+STATUS,state);
if(state & RX_DR)
{
SI24R1_Read_Buf(RD_RX_PLOAD,rxbuf,TX_PLOAD_WIDTH);
SI24R1_Write_Reg(FLUSH_RX,0xff);
return 0;
}
return 1;
}
/*发包函数*/
u8 SI24R1_TxPacket(u8 *txbuf)
{
u8 state;
CE=0;
SI24R1_Write_Buf(WR_TX_PLOAD, txbuf, TX_PLOAD_WIDTH);
CE=1;
while(IRQ == 1);
state = SI24R1_Read_Reg(STATUS);
SI24R1_Write_Reg(WRITE_REG+STATUS, state);
if(state&MAX_RT)
{
SI24R1_Write_Reg(FLUSH_TX,0xff);
return MAX_RT;
}
if(state&TX_DS)
{
return TX_DS;
}
return 0xFF;
}
SI24R1.h头文件内容:
#include "config.h"
//SI24R1 PIN DEFINITION
#define MOSI P13 // Master Out, Slave In pin (output)
#define MISO P10 // Master In, Slave Out pin (input)
#define SCK P12 // Serial Clock pin, (output)
#define CSN P15 // Slave Select pin, (output to CSN)
#define CE P14 // Chip Enable pin signal (output)
#define IRQ P11 // Interrupt signal, from nRF24L01 (input)
#define TX_ADR_WIDTH 5 // 5×Ö½Ú¿í¶ÈµÄ·¢ËÍ/½ÓÊÕµØÖ·
#define TX_PLOAD_WIDTH 32 // Êý¾ÝͨµÀÓÐЧÊý¾Ý¿í¶È
//********************************************************************************************************************//
// SPI(SI24R1) commands
#define READ_REG 0x00 // Define read command to register
#define WRITE_REG 0x20 // Define write command to register
#define RD_RX_PLOAD 0x61 // Define RX payload register address
#define WR_TX_PLOAD 0xA0 // Define TX payload register address
#define FLUSH_TX 0xE1 // Define flush TX register command
#define FLUSH_RX 0xE2 // Define flush RX register command
#define REUSE_TX_PL 0xE3 // Define reuse TX payload register command
#define NOP 0xFF // Define No Operation, might be used to read status register
//********************************************************************************************************************//
// SPI(SI24R1) registers(addresses)
#define CONFIG 0x00 // 'Config' register address
#define EN_AA 0x01 // 'Enable Auto Acknowledgment' register address
#define EN_RXADDR 0x02 // 'Enabled RX addresses' register address
#define SETUP_AW 0x03 // 'Setup address width' register address
#define SETUP_RETR 0x04 // 'Setup Auto. Retrans' register address
#define RF_CH 0x05 // 'RF channel' register address
#define RF_SETUP 0x06 // 'RF setup' register address
#define STATUS 0x07 // 'Status' register address
#define OBSERVE_TX 0x08 // 'Observe TX' register address
#define RSSI 0x09 // 'Received Signal Strength Indecator' register address
#define RX_ADDR_P0 0x0A // 'RX address pipe0' register address
#define RX_ADDR_P1 0x0B // 'RX address pipe1' register address
#define RX_ADDR_P2 0x0C // 'RX address pipe2' register address
#define RX_ADDR_P3 0x0D // 'RX address pipe3' register address
#define RX_ADDR_P4 0x0E // 'RX address pipe4' register address
#define RX_ADDR_P5 0x0F // 'RX address pipe5' register address
#define TX_ADDR 0x10 // 'TX address' register address
#define RX_PW_P0 0x11 // 'RX payload width, pipe0' register address
#define RX_PW_P1 0x12 // 'RX payload width, pipe1' register address
#define RX_PW_P2 0x13 // 'RX payload width, pipe2' register address
#define RX_PW_P3 0x14 // 'RX payload width, pipe3' register address
#define RX_PW_P4 0x15 // 'RX payload width, pipe4' register address
#define RX_PW_P5 0x16 // 'RX payload width, pipe5' register address
#define FIFO_STATUS 0x17 // 'FIFO Status Register' register address
#define DYNPD 0x1C
#define FEATURE 0x1D
//********************************************************************************************************************//
// STATUS Register
#define RX_DR 0x40 /**/
#define TX_DS 0x20
#define MAX_RT 0x10
//********************************************************************************************************************//
// FUNCTION's PROTOTYPES //
//********************************************************************************************************************//
//SI24R1 API Functions
void SI24R1_Init(void); //SI24R1 Pin Init
u8 SI24R1_Write_Reg(u8 reg, u8 value);
u8 SI24R1_Write_Buf(u8 reg, const u8 *pBuf, u8 bytes);
u8 SI24R1_Read_Reg(u8 reg);
u8 SI24R1_Read_Buf(u8 reg, u8 *pBuf, u8 bytes);
void SI24R1_RX_Mode(void);
void SI24R1_TX_Mode(void);
u8 SI24R1_RxPacket(u8 *rxbuf);
u8 SI24R1_TxPacket(u8 *txbuf);
#endif
Main.c文件内容:
#include "SI24R1.h"
#include "delay.h"
#include "string.h"
#define LED3 P16
#define LED4 P35
#define KEY1 P12
#define KEY2 P14
unsigned char tx_data[32]={0};
unsigned char rx_data[32]={0};
#define FOSC 22118400L
#define BAUD 115200//9600
#define UART_RX_FIFO 32
unsigned char UART_RX_Data[UART_RX_FIFO];
/*串口函数初始化*/
void uart_init(void)
{
SCON = 0x50;
T2L = (65536 - (FOSC/4/BAUD));
T2H = (65536 - (FOSC/4/BAUD)) >> 8;
AUXR = 0x14;
AUXR |= 0x01;
ES = 1;
EA = 1;
}
/*串口发送字符函数*/
void SendData(unsigned char Data)
{
SBUF = Data;
while(TI == 0);
TI = 0;
}
/*串口发送字符串函数*/
void SendString(char *s)
{
while(*s)
{
SendData(*s++);
}
}
/*串口接收字符函数*/
void RecvData(unsigned char Data)
{
unsigned int i;
for(i=0;i<UART_RX_FIFO;i++)
{
UART_RX_Data[i] = Data;
}
while(RI == 0);
RI = 0;
}
/*设置串口响应中断*/
void UART_i() interrupt 4
{
if(RI)
{
RI = 0;
RecvData(SBUF);
}
if(TI)
{
TI = 0;
}
}
void main(void)
{
unsigned char udata=0,rssi;
uart_init(); //串口初始化
SI24R1_Init();//2.4G SPI初始化
#if 0
SI24R1_TX_Mode(); //设置发射模式
#else
SI24R1_RX_Mode(); //设置接收模式
#endif
while(1)
{
#if 0
udata = SI24R1_TxPacket(tx_data);//发包
#else
udata = SI24R1_RxPacket(rx_data);//收包
rssi=SI24R1_Read_Reg(RSSI); //获取接收信号强度
if(rssi == 0)
{
SendString("<-60dBm\r\n");
}
else
{
SendString(">-60dBm\r\n");
}
#endif
delay_ms(50); // Broadcasting interval
if(udata == 0xff)
{
LED4=0;//SendString("send fail\r\n");
LED3=0;
SendString("send or recv fail\r\n");
}
else
{
LED4=1;//SendString("send ok\r\n");
LED3=1;
SendString("send or recv ok\r\n");
}
}
}
复制代码
欢迎光临 (http://www.51hei.com/bbs/)
Powered by Discuz! X3.1