1、STM32 (Cortex-M3) 中的优先级概念
STM32(Cortex-M3)中有两个优先级的概念:抢占式优先级和响应优先级,也把响应优先级称作“亚优先级”或“副优先级”,每个中断源都需要被指定这两种优先级。
1. 何为占先式优先级(pre-emption priority)
高占先式优先级的中断事件会打断当前的主程序/中断程序运行—抢断式优先响应,俗称中断嵌套。
2. 何为副优先级(subpriority)
在占先式优先级相同的情况下,高副优先级的中断优先被响应;
在占先式优先级相同的情况下,如果有低副优先级中断正在执行,高副优先级的中断要等待已被响应的低副优先级中断执行结束后才能得到响应—非抢断式响应(不能嵌套)。
3. 判断中断是否会被响应的依据
首先是占先式优先级,其次是副优先级;
占先式优先级决定是否会有中断嵌套;
Reset、NMI、Hard Fault 优先级为负(高于普通中断优先级)且不可调整。
4. 优先级冲突的处理
具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断的嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。
当 两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后 才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们 在中断表中的排位顺序决定先处理哪一个。
5. Cortex-M3中对中断优先级的定义
既然每个中断源都需要被指定这两种优先级,就需要有相应的寄存器位记录每个中断的优先级;在Cortex-M3中定义了8个比特位用于设置中断源的优先级,这8个比特位可以有8种分配方式,如下:
所有8位用于指定响应优先级
最高1位用于指定抢占式优先级,最低7位用于指定响应优先级
最高2位用于指定抢占式优先级,最低6位用于指定响应优先级
最高3位用于指定抢占式优先级,最低5位用于指定响应优先级
最高4位用于指定抢占式优先级,最低4位用于指定响应优先级
最高5位用于指定抢占式优先级,最低3位用于指定响应优先级
最高6位用于指定抢占式优先级,最低2位用于指定响应优先级
最高7位用于指定抢占式优先级,最低1位用于指定响应优先级
这就是优先级分组的概念。
6. stm32中对中断优先级的定义
Cortex-M3允许具有较少中断源时使用较少的寄存器位指定中断源的优先级,因此STM32把指定中断优先级的寄存器位减少到4位,这4个寄存器位的分组方式如下:
第0组:所有4位用于指定响应优先级
第1组:最高1位用于指定抢占式优先级,最低3位用于指定响应优先级
第2组:最高2位用于指定抢占式优先级,最低2位用于指定响应优先级
第3组:最高3位用于指定抢占式优先级,最低1位用于指定响应优先级
第4组:所有4位用于指定抢占式优先级
AIRC(Application Interrupt and Reset Register)寄存器中有用于指定优先级的 4 bits。这4个bits用于分配preemption优先级和sub优先级,在STM32的固件库中定义如下:
/* Preemption Priority Group */
#define NVIC_PriorityGroup_0 ((u32)0x700) /* 0 bits for pre-emption priority
4 bits for subpriority */
#define NVIC_PriorityGroup_1 ((u32)0x600) /* 1 bits for pre-emption priority
3 bits for subpriority */
#define NVIC_PriorityGroup_2 ((u32)0x500) /* 2 bits for pre-emption priority
2 bits for subpriority */
#define NVIC_PriorityGroup_3 ((u32)0x400) /* 3 bits for pre-emption priority
1 bits for subpriority */
#define NVIC_PriorityGroup_4 ((u32)0x300) /* 4 bits for pre-emption priority
0 bits for subpriority */
可以通过调用STM32的固件库中的函数NVIC_PriorityGroupConfig()选择使用哪种优先级分组方式,这个函数的参数有下列5种:
NVIC_PriorityGroup_0 => 选择第0组
NVIC_PriorityGroup_1 => 选择第1组
NVIC_PriorityGroup_2 => 选择第2组
NVIC_PriorityGroup_3 => 选择第3组
NVIC_PriorityGroup_4 => 选择第4组
接下来就是指定中断源的优先级,下面以一个简单的例子说明如何指定中断源的抢占式优先级和响应优先级:
// 选择使用优先级分组第1组
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
//定义NVIC的结构体变量
NVIC_InitTypeDef NVIC_InitStructure;
// 使能EXTI0中断
NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //指定抢占式优先级别1
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // 指定响应优先级别0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// 使能EXTI9_5中断
NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //指定抢占式优先级别0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; // 指定响应优先级别1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
-------------------------------------------------------------------------------
要注意的几点是:
1. 如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果;
2. 抢占式优先级别相同的中断源之间没有嵌套关系;
3. 如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。
2、开关总中断
在STM32/Cortex-M3中是通过改变CPU的当前优先级来允许或禁止中断。
PRIMASK位:只允许NMI和hard fault异常,其他中断/异常都被屏蔽(当前CPU优先级=0)。
FAULTMASK位:只允许NMI,其他所有中断/异常都被屏蔽(当前CPU优先级=-1)。
在STM32固件库中(stm32f10x_nvic.c和stm32f10x_nvic.h) 定义了四个函数操作PRIMASK位和FAULTMASK位,改变CPU的当前优先级,从而达到控制所有中断的目的。
下面两个函数等效于关闭总中断:
void NVIC_SETPRIMASK(void);
void NVIC_SETFAULTMASK(void);
下面两个函数等效于开放总中断:
void NVIC_RESETPRIMASK(void);
void NVIC_RESETFAULTMASK(void);
上面两组函数要成对使用,但不能交叉使用。
例如:
第一种方法:
NVIC_SETPRIMASK(); //关闭总中断 ,只允许NMI和hard fault异常
NVIC_RESETPRIMASK();//开放总中断
第二种方法:
NVIC_SETFAULTMASK(); //关闭总中断 ,只允许NMI
NVIC_RESETFAULTMASK();//开放总中断
常常使用:
NVIC_SETPRIMASK(); // Disable Interrupts
NVIC_RESETPRIMASK(); // Enable Interrupts
可以用:
#define CLI() __set_PRIMASK(1) //关闭总中断
#define SEI() __set_PRIMASK(0) //打开总中断
来实现开关总中断的功能。
二、寄存器介绍:
1、 在core_cm3.h中定义了:
typedef struct
{
__IO uint32_t ISER[8]; /*Offset:0x000(R/W)Interrupt Set Enable Register*/
//SETENA:中断0-239的使能寄存器;地址为:0xE000-E100——0xE000-E11C;复位值:0
uint32_t RESERVED0[24];//未定义的寄存器
__IO uint32_t ICER[8]; /*Offset: 0x080 (R/W)Interrupt ClearEnable Register*/
//CLRENA:中断0-239的除能寄存器;地址为:0xE000-E180——0xE000-E19C;复位值:0
uint32_t RSERVED1[24]; //未定义的寄存器
__IO uint32_t ISPR[8];/* Offset: 0x100 (R/W)Interrupt Set Pending Register*/
//SETPEND:中断0-239的悬起寄存器;地址为:0xE000-E200——0xE000-E21C;复位值:0
uint32_t RESERVED2[24]; //未定义的寄存器
__IO uint32_t ICPR[8];/* Offset: 0x180 (R/W)Interrupt Clear Pending Register*/
//CLRPEND:中断0-239的解悬寄存器;地址为:0xE000-E280——0xE000-E29C;复位值:0
uint32_t RESERVED3[24]; //未定义的寄存器
__IO uint32_t IABR[8]; /*Offset: 0x200 (R/W)Interrupt Active bit Register*/
//ACTIVE:中断0-239的活动状态寄存器;地址为:0xE000-E300—0xE000-E31C复位值:0
uint32_t RESERVED4[56]; //未定义的寄存器
__IO uint8_t IP[240];/*Offset:0x300(R/W)Interrupt Priority Register(8Bit wide)*/
//中断优先级寄存器阵列(8位):中断0-239的中断优先级;
//地址为:0xE000-E400——0xE000-E4EF;复位值:0
uint32_t RESERVED5[644]; //未定义的寄存器
__IO uint32_t STIR; /* Offset: 0xE00 (R/W)Software Trigger Interrupt Register*/
//STIR:软件触发中断寄存器(如写入8则触发中断8的中断);
//地址为:0xE000-EF00;复位值:-
} NVIC_Type;
#define SCS_BASE (0xE000E000) /*System Control Space Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100) /*NVIC Base Address */
#define NVIC ((NVIC_Type *)NVIC_BASE) /*NVIC configuration struct*/
typedef struct
{
__I uint32_t CPUID; /*Offset: 0x000 (R/ ) CPUID Base Register*/
//CPUID: --;地址为:0xE000-ED00;复位值:0x410fc230
__IO uint32_t ICSR; /*Offset: 0x004(R/W)Interrupt Control and State Register*/
//ICSR:中断控制及状态寄存器;地址为:0xE000-ED04;复位值:0
__IO uint32_t VTOR; /*Offset: 0x008 (R/W) Vector Table Offset Register*/
//VTOR:向量表偏移寄存器;地址为:0xE000-ED08;复位值:-
__IO uint32_t AIRCR; /*Offset:0x00C(R/W)Application Interrupt and Reset Control Register*/
__IO uint32_t SCR; /*Offset: 0x010 (R/W) System Control Register*/
__IO uint32_t CCR; /*Offset: 0x014 (R/W) Configuration Control Register*/
__IO uint8_t SHP[12]; /*Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */
__IO uint32_t SHCSR; /*Offset: 0x024 (R/W) System Handler Control and State Register*/
__IO uint32_t CFSR; /*Offset: 0x028 (R/W) Configurable Fault Status Register*/
__IO uint32_t HFSR; /*Offset: 0x02C (R/W) HardFault Status Register */
__IO uint32_t DFSR; /*Offset: 0x030 (R/W) Debug Fault Status Register*/
__IO uint32_t MMFAR; /*Offset: 0x034 (R/W) MemManage Fault Address Register*/
__IO uint32_t BFAR; /*Offset: 0x038 (R/W) BusFault Address Register*/
__IO uint32_t AFSR; /*Offset: 0x03C (R/W) Auxiliary Fault Status Register*/
__I uint32_t PFR[2]; /*Offset: 0x040 (R/ ) Processor Feature Register*/
__I uint32_t DFR; /*Offset: 0x048 (R/ ) Debug Feature Register*/
__I uint32_t ADR; /*Offset: 0x04C (R/ ) Auxiliary Feature Register*/
__I uint32_t MMFR[4];/*Offset: 0x050 (R/ ) Memory Model Feature Register*/
__I uint32_t ISAR[5]; /*Offset: 0x060(R/ )Instruction Set Attributes Register*/
uint32_t RESERVED0[5];
__IO uint32_t CPACR; /*Offset: 0x088 (R/W)Coprocessor Access Control Register*/
} SCB_Type;
#define SCS_BASE (0xE000E000) /*System Control Space Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00) /*System Control Block Base Address */
#define SCB ((SCB_Type *)SCB_BASE)/*SCB configuration struct*/
三、初始化设置
STM32中的NVIC设置的流程如下:
选择NVIC的中断分组:
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //选择中断分组1
注意:优先级分组只能设置一次。
定义NVIC的结构体变量:NVIC_InitTypeDef NVIC_InitStructure;
选择要进行NVIC设置的模块:
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //选择串口1中断
进行抢占式中断优先级的设置:
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//抢占式中断优先级设置为0
进行响应式中断优先级的设置:
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;//响应式中断优先级设置为3
使能中断:NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//使能中断
根据上述设置进行初始化:NVIC_Init(&NVIC_InitStructure);
注:NVIC_InitTypeDef的定义在misc.h中;NVIC的相关函数在misc.c中。
NVIC_IRQChannel的取值列表:
typedef enum IRQn
{
/****** Cortex-M3 Processor Exceptions Numbers ***************************************************/
NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
MemoryManagement_IRQn = -12, /*!< 4 Cortex-M3 Memory Management Interrupt */
BusFault_IRQn = -11, /*!< 5 Cortex-M3 Bus Fault Interrupt */
UsageFault_IRQn = -10, /*!< 6 Cortex-M3 Usage Fault Interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M3 SV Call Interrupt */
DebugMonitor_IRQn = -4, /*!< 12 Cortex-M3 Debug Monitor Interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M3 Pend SV Interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M3 System Tick Interrupt */
/****** STM32 specific Interrupt Numbers *********************************************************/
WWDG_IRQn = 0, /*!< Window WatchDog Interrupt */
PVD_IRQn = 1, /*!< PVD through EXTI Line detection Interrupt */
TAMPER_IRQn = 2, /*!< Tamper Interrupt */
RTC_IRQn = 3, /*!< RTC global Interrupt */
FLASH_IRQn = 4, /*!< FLASH global Interrupt */
RCC_IRQn = 5, /*!< RCC global Interrupt */
EXTI0_IRQn = 6, /*!< EXTI Line0 Interrupt */
EXTI1_IRQn = 7, /*!< EXTI Line1 Interrupt */
EXTI2_IRQn = 8, /*!< EXTI Line2 Interrupt */
EXTI3_IRQn = 9, /*!< EXTI Line3 Interrupt */
EXTI4_IRQn = 10, /*!< EXTI Line4 Interrupt */
DMA1_Channel1_IRQn = 11, /*!< DMA1 Channel 1 global Interrupt */
DMA1_Channel2_IRQn = 12, /*!< DMA1 Channel 2 global Interrupt */
DMA1_Channel3_IRQn = 13, /*!< DMA1 Channel 3 global Interrupt */
DMA1_Channel4_IRQn = 14, /*!< DMA1 Channel 4 global Interrupt */
DMA1_Channel5_IRQn = 15, /*!< DMA1 Channel 5 global Interrupt */
DMA1_Channel6_IRQn = 16, /*!< DMA1 Channel 6 global Interrupt */
DMA1_Channel7_IRQn = 17, /*!< DMA1 Channel 7 global Interrupt */
#ifdef STM32F10X_CL
ADC1_2_IRQn = 18, /*!< ADC1 and ADC2 global Interrupt */
CAN1_TX_IRQn = 19, /*!< USB Device High Priority or CAN1 TX Interrupts */
CAN1_RX0_IRQn = 20, /*!< USB Device Low Priority or CAN1 RX0 Interrupts */
CAN1_RX1_IRQn = 21, /*!< CAN1 RX1 Interrupt */
CAN1_SCE_IRQn = 22, /*!< CAN1 SCE Interrupt */
EXTI9_5_IRQn = 23, /*!< External Line[9:5] Interrupts */
TIM1_BRK_IRQn = 24, /*!< TIM1 Break Interrupt */
TIM1_UP_IRQn = 25, /*!< TIM1 Update Interrupt */
TIM1_TRG_COM_IRQn = 26, /*!< TIM1 Trigger and Commutation Interrupt */
TIM1_CC_IRQn = 27, /*!< TIM1 Capture Compare Interrupt */
TIM2_IRQn = 28, /*!< TIM2 global Interrupt */
TIM3_IRQn = 29, /*!< TIM3 global Interrupt */
TIM4_IRQn = 30, /*!< TIM4 global Interrupt */
I2C1_EV_IRQn = 31, /*!< I2C1 Event Interrupt */
I2C1_ER_IRQn = 32, /*!< I2C1 Error Interrupt */
I2C2_EV_IRQn = 33, /*!< I2C2 Event Interrupt */
I2C2_ER_IRQn = 34, /*!< I2C2 Error Interrupt */
SPI1_IRQn = 35, /*!< SPI1 global Interrupt */
SPI2_IRQn = 36, /*!< SPI2 global Interrupt */
USART1_IRQn = 37, /*!< USART1 global Interrupt */
USART2_IRQn = 38, /*!< USART2 global Interrupt */
USART3_IRQn = 39, /*!< USART3 global Interrupt */
EXTI15_10_IRQn = 40, /*!< External Line[15:10] Interrupts */
RTCAlarm_IRQn = 41, /*!< RTC Alarm through EXTI Line Interrupt */
OTG_FS_WKUP_IRQn = 42, /*!< USB OTG FS WakeUp from suspend through EXTI Line Interrupt */
TIM5_IRQn = 50, /*!< TIM5 global Interrupt */
SPI3_IRQn = 51, /*!< SPI3 global Interrupt */
UART4_IRQn = 52, /*!< UART4 global Interrupt */
UART5_IRQn = 53, /*!< UART5 global Interrupt */
TIM6_IRQn = 54, /*!< TIM6 global Interrupt */
TIM7_IRQn = 55, /*!< TIM7 global Interrupt */
DMA2_Channel1_IRQn = 56, /*!< DMA2 Channel 1 global Interrupt */
DMA2_Channel2_IRQn = 57, /*!< DMA2 Channel 2 global Interrupt */
DMA2_Channel3_IRQn = 58, /*!< DMA2 Channel 3 global Interrupt */
DMA2_Channel4_IRQn = 59, /*!< DMA2 Channel 4 global Interrupt */
DMA2_Channel5_IRQn = 60, /*!< DMA2 Channel 5 global Interrupt */
ETH_IRQn = 61, /*!< Ethernet global Interrupt */
ETH_WKUP_IRQn = 62, /*!< Ethernet Wakeup through EXTI line Interrupt */
CAN2_TX_IRQn = 63, /*!< CAN2 TX Interrupt */
CAN2_RX0_IRQn = 64, /*!< CAN2 RX0 Interrupt */
CAN2_RX1_IRQn = 65, /*!< CAN2 RX1 Interrupt */
CAN2_SCE_IRQn = 66, /*!< CAN2 SCE Interrupt */
OTG_FS_IRQn = 67 /*!< USB OTG FS global Interrupt */
#endif /* STM32F10X_CL */
} IRQn_Type;
使用库函数进行时钟系统初始化配置
void NVIC_config()//配置中断
{
NVIC_InitTypeDef NVIC_InitStructure;
//NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);//选择中断分组1
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//选择串口1中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//抢占式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;//响应式中断优先级设置为3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//使能中断
NVIC_Init(&NVIC_InitStructure);
}
四、相关库函数解析
1、库中所涉及到的结构体
typedef struct
{
uint8_t NVIC_IRQChannel; /*!< Specifies the IRQ channel to be enabled or disabled.
This parameter can be a value of @ref IRQn_Type (For the
complete STM32 Devices IRQ Channels list, please refer to
stm32f10x.h file) */
uint8_t NVIC_IRQChannelPreemptionPriority; /*!< Specifies the pre-emption priority for the
IRQ channel specified in NVIC_IRQChannel. This parameter
can be a value between 0 and 15 as described in the table @ref
NVIC_Priority_Table */
uint8_t NVIC_IRQChannelSubPriority; /*!< Specifies the subpriority level for the IRQ channel
specified in NVIC_IRQChannel. This parameter can be a value
between 0 and 15 as described in the table @ref
NVIC_Priority_Table */
FunctionalState NVIC_IRQChannelCmd; /*!< Specifies whether the IRQ channel defined in
NVIC_IRQChannel will be enabled or disabled.
This parameter can be set either to ENABLE or DISABLE */
} NVIC_InitTypeDef;
2、库函数解析
在misc.h中:
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);//对优先级分组进行配置
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct);//根据中断结构体的值初始化中断
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset);//设置向量表的位置和
偏移
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState); //选择系
统进入低功耗模式的条件
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource);//系统滴答时钟源的配置
在core_cm3.h中:
uint32_t __get_BASEPRI(void);//Return the Base Priority value
void __set_BASEPRI(uint32_t basePri);//Set the Base Priority value
uint32_t __get_PRIMASK(void);//Return the Priority Mask value
void __set_PRIMASK(uint32_t priMask);//Set the Priority Mask value
uint32_t __get_FAULTMASK(void);//Return the Fault Mask value
void __set_FAULTMASK(uint32_t faultMask);//Set the Fault Mask value
uint32_t __get_CONTROL(void);//Return the Control Register value
void __set_CONTROL(uint32_t control);//Set the Control Register value
void NVIC_SetPriorityGrouping(uint32_t PriorityGroup);
uint32_t NVIC_GetPriorityGrouping(void);
void NVIC_EnableIRQ(IRQn_Type IRQn);
void NVIC_DisableIRQ(IRQn_Type IRQn);
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn);
void NVIC_SetPendingIRQ(IRQn_Type IRQn);
void NVIC_ClearPendingIRQ(IRQn_Type IRQn);
uint32_t NVIC_GetActive(IRQn_Type IRQn);
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);
uint32_t NVIC_GetPriority(IRQn_Type IRQn);
uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority);
void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority);
五、实例详解
void NVIC_config()//配置中断
{
NVIC_InitTypeDef NVIC_InitStructure;
//NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);//选择中断分组1
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//选择串口1中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//抢占式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;//响应式中断优先级设置为3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//使能中断
NVIC_Init(&NVIC_InitStructure);
}
欢迎光临 (http://www.51hei.com/bbs/) | Powered by Discuz! X3.1 |