输入电容:Ciss=CGS+CGD
输出电容:Coss=CDS+CGD
反向传输电容:Crss=CGD
• 沟道的宽度和沟槽的宽度
• G极氧化层的厚度和一致性
• 沟槽的深度和形状
• S极体-EPI层的掺杂轮廓
• 体二极管PN结的面积和掺杂轮廓
• 设计参数,如多晶硅的宽度,晶胞斜度
• 栅极氧化层厚度和一致性
• 体水平扩散,决定了JFET区域的宽度
• 体-EPI和JFET区域的掺杂轮廓
• 栅极多晶硅掺杂通常不是一个因素,由于其是退化的掺杂;JEFET区域的宽度,JFET轮廓和EPI层掺杂轮廓主导着这个参数
高压平面功率MOSFET的Coss由以下因素决定:
• 所有影响Crss参数,由于它是Coss一部分
• 体二极管PN结区域和掺杂轮廓
3、功率MOSFET寄生电容的非线性
MOSFET的电容是非线性的,是直流偏置电压的函数,图3示出了寄生电容随VDS电压增加而变化。所有的MOSFET的寄生电容来源于不依赖于偏置的氧化物电容和依赖于偏置的硅耗尽层电容的组合。由于器件里的耗尽层受到了电压影响,电容CGS和CGD随着所加电压的变化而变化。
图3:AON6512电容随电压变化
电容随着VDS电压的增加而减小,尤其是输出电容和反向传输电容。当电压增加时,和VDS相关电容的减小来源于耗尽层电容减小,耗尽层区域扩大。然而相对于CGD,CGS受电压的影响非常小,CGD受电压影响程度是CGS的100倍以上。
图4显示出了在VDS电压值较低时,当VGS电压增加大于阈值电压后,MOSFET输入电容会随着VGS增加而增加。
图4:输入电容随VGS变化
因为MOSFET沟道的电子反形层形成,在沟漕底部形成电子聚集层,这也是为什么一旦电压超过QGD阶级,栅极电荷特性曲线的斜率增加的原因。
所有的电容参数不受温度的影响,温度变化时,它们的值不会发生变化。
文章来源:微信公众号 融创芯城(一站式电子元器件、PCB、PCBA购买服务平台,项目众包平台,方案共享平台)
dangran222 发表于 2017-3-24 16:19
您好,我想请教您一个问题,LCR测试仪在校准的时候是有特定的频率下校准嘛?也就是说10uf的电容是什么条件 ...
欢迎光临 (http://www.51hei.com/bbs/) | Powered by Discuz! X3.1 |