标题:
四轴飞行器 迷你飞控源码 328P主控源码
[打印本页]
作者:
低调农村
时间:
2017-9-17 13:08
标题:
四轴飞行器 迷你飞控源码 328P主控源码
迷你飞控源码 328P主控 四轴飞行器源码
0.png
(61.61 KB, 下载次数: 88)
下载附件
2017-9-17 17:10 上传
资料下载:
飞控程序源码.rar
(146.67 KB, 下载次数: 27)
2017-9-17 13:07 上传
点击文件名下载附件
下载积分: 黑币 -5
源程序:
#include "Arduino.h"
#include "config.h"
#include "def.h"
#include "types.h"
#include "MultiWii.h"
#include "IMU.h"
#include "Sensors.h"
void getEstimatedAttitude();
void computeIMU () {
uint8_t axis;
static int16_t gyroADCprevious[3] = {0,0,0};
int16_t gyroADCp[3];
int16_t gyroADCinter[3];
static uint32_t timeInterleave = 0;
//we separate the 2 situations because reading gyro values with a gyro only setup can be acchieved at a higher rate
//gyro+nunchuk: we must wait for a quite high delay betwwen 2 reads to get both WM+ and Nunchuk data. It works with 3ms
//gyro only: the delay to read 2 consecutive values can be reduced to only 0.65ms
#if defined(NUNCHUCK)
annexCode();
while((uint16_t)(micros()-timeInterleave)<INTERLEAVING_DELAY) ; //interleaving delay between 2 consecutive reads
timeInterleave=micros();
ACC_getADC();
getEstimatedAttitude(); // computation time must last less than one interleaving delay
while((uint16_t)(micros()-timeInterleave)<INTERLEAVING_DELAY) ; //interleaving delay between 2 consecutive reads
timeInterleave=micros();
f.NUNCHUKDATA = 1;
while(f.NUNCHUKDATA) ACC_getADC(); // For this interleaving reading, we must have a gyro update at this point (less delay)
for (axis = 0; axis < 3; axis++) {
// empirical, we take a weighted value of the current and the previous values
// /4 is to average 4 values, note: overflow is not possible for WMP gyro here
imu.gyroData[axis] = (imu.gyroADC[axis]*3+gyroADCprevious[axis])>>2;
gyroADCprevious[axis] = imu.gyroADC[axis];
}
#else
#if ACC
ACC_getADC();
getEstimatedAttitude();
#endif
#if GYRO
Gyro_getADC();
#endif
for (axis = 0; axis < 3; axis++)
gyroADCp[axis] = imu.gyroADC[axis];
timeInterleave=micros();
annexCode();
uint8_t t=0;
while((uint16_t)(micros()-timeInterleave)<650) t=1; //empirical, interleaving delay between 2 consecutive reads
if (!t) annex650_overrun_count++;
#if GYRO
Gyro_getADC();
#endif
for (axis = 0; axis < 3; axis++) {
gyroADCinter[axis] = imu.gyroADC[axis]+gyroADCp[axis];
// empirical, we take a weighted value of the current and the previous values
imu.gyroData[axis] = (gyroADCinter[axis]+gyroADCprevious[axis])/3;
gyroADCprevious[axis] = gyroADCinter[axis]>>1;
if (!ACC) imu.accADC[axis]=0;
}
#endif
#if defined(GYRO_SMOOTHING)
static int16_t gyroSmooth[3] = {0,0,0};
for (axis = 0; axis < 3; axis++) {
imu.gyroData[axis] = (int16_t) ( ( (int32_t)((int32_t)gyroSmooth[axis] * (conf.Smoothing[axis]-1) )+imu.gyroData[axis]+1 ) / conf.Smoothing[axis]);
gyroSmooth[axis] = imu.gyroData[axis];
}
#elif defined(TRI)
static int16_t gyroYawSmooth = 0;
imu.gyroData[YAW] = (gyroYawSmooth*2+imu.gyroData[YAW])/3;
gyroYawSmooth = imu.gyroData[YAW];
#endif
}
// **************************************************
// Simplified IMU based on "Complementary Filter"
// Inspired by http://starlino.com/imu_guide.html
//
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
//
// The following ideas was used in this project:
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
// 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation
// 3) C. Hastings approximation for atan2()
// 4) Optimization tricks: http://www.hackersdelight.org/
//
// Currently Magnetometer uses separate CF which is used only
// for heading approximation.
//
// **************************************************
//****** advanced users settings *******************
/* Set the Low Pass Filter factor for ACC
Increasing this value would reduce ACC noise (visible in GUI), but would increase ACC lag time
Comment this if you do not want filter at all.
unit = n power of 2 */
// this one is also used for ALT HOLD calculation, should not be changed
#ifndef ACC_LPF_FACTOR
#define ACC_LPF_FACTOR 4 // that means a LPF of 16
#endif
/* Set the Gyro Weight for Gyro/Acc complementary filter
Increasing this value would reduce and delay Acc influence on the output of the filter*/
#ifndef GYR_CMPF_FACTOR
#define GYR_CMPF_FACTOR 600
#endif
/* Set the Gyro Weight for Gyro/Magnetometer complementary filter
Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/
#define GYR_CMPFM_FACTOR 250
//****** end of advanced users settings *************
#define INV_GYR_CMPF_FACTOR (1.0f / (GYR_CMPF_FACTOR + 1.0f))
#define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f))
typedef struct fp_vector {
float X,Y,Z;
} t_fp_vector_def;
typedef union {
float A[3];
t_fp_vector_def V;
} t_fp_vector;
typedef struct int32_t_vector {
int32_t X,Y,Z;
} t_int32_t_vector_def;
typedef union {
int32_t A[3];
t_int32_t_vector_def V;
} t_int32_t_vector;
int16_t _atan2(int32_t y, int32_t x){
float z = (float)y / x;
int16_t a;
if ( abs(y) < abs(x) ){
a = 573 * z / (1.0f + 0.28f * z * z);
if (x<0) {
if (y<0) a -= 1800;
else a += 1800;
}
} else {
a = 900 - 573 * z / (z * z + 0.28f);
if (y<0) a -= 1800;
}
return a;
}
float InvSqrt (float x){
union{
int32_t i;
float f;
} conv;
conv.f = x;
conv.i = 0x5f3759df - (conv.i >> 1);
return 0.5f * conv.f * (3.0f - x * conv.f * conv.f);
}
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
void rotateV(struct fp_vector *v,float* delta) {
fp_vector v_tmp = *v;
v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y;
v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y;
v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X;
}
static int32_t accLPF32[3] = {0, 0, 1};
static float invG; // 1/|G|
static t_fp_vector EstG;
static t_int32_t_vector EstG32;
#if MAG
static t_int32_t_vector EstM32;
static t_fp_vector EstM;
#endif
void getEstimatedAttitude(){
uint8_t axis;
int32_t accMag = 0;
float scale, deltaGyroAngle[3];
uint8_t validAcc;
static uint16_t previousT;
uint16_t currentT = micros();
scale = (currentT - previousT) * GYRO_SCALE; // GYRO_SCALE unit: radian/microsecond
previousT = currentT;
// Initialization
for (axis = 0; axis < 3; axis++) {
deltaGyroAngle[axis] = imu.gyroADC[axis] * scale; // radian
accLPF32[axis] -= accLPF32[axis]>>ACC_LPF_FACTOR;
accLPF32[axis] += imu.accADC[axis];
imu.accSmooth[axis] = accLPF32[axis]>>ACC_LPF_FACTOR;
accMag += (int32_t)imu.accSmooth[axis]*imu.accSmooth[axis] ;
}
rotateV(&EstG.V,deltaGyroAngle);
#if MAG
rotateV(&EstM.V,deltaGyroAngle);
#endif
accMag = accMag*100/((int32_t)ACC_1G*ACC_1G);
validAcc = 72 < (uint16_t)accMag && (uint16_t)accMag < 133;
// Apply complimentary filter (Gyro drift correction)
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
// To do that, we just skip filter, as EstV already rotated by Gyro
for (axis = 0; axis < 3; axis++) {
if ( validAcc )
EstG.A[axis] = (EstG.A[axis] * GYR_CMPF_FACTOR + imu.accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
EstG32.A[axis] = EstG.A[axis]; //int32_t cross calculation is a little bit faster than float
#if MAG
EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + imu.magADC[axis]) * INV_GYR_CMPFM_FACTOR;
EstM32.A[axis] = EstM.A[axis];
#endif
}
if ((int16_t)EstG32.A[2] > ACCZ_25deg)
f.SMALL_ANGLES_25 = 1;
else
f.SMALL_ANGLES_25 = 0;
// Attitude of the estimated vector
int32_t sqGX_sqGZ = sq(EstG32.V.X) + sq(EstG32.V.Z);
invG = InvSqrt(sqGX_sqGZ + sq(EstG32.V.Y));
att.angle[ROLL] = _atan2(EstG32.V.X , EstG32.V.Z);
att.angle[PITCH] = _atan2(EstG32.V.Y , InvSqrt(sqGX_sqGZ)*sqGX_sqGZ);
#if MAG
att.heading = _atan2(
EstM32.V.Z * EstG32.V.X - EstM32.V.X * EstG32.V.Z,
(EstM.V.Y * sqGX_sqGZ - (EstM32.V.X * EstG32.V.X + EstM32.V.Z * EstG32.V.Z) * EstG.V.Y)*invG );
att.heading += conf.mag_declination; // Set from GUI
att.heading /= 10;
#endif
#if defined(THROTTLE_ANGLE_CORRECTION)
cosZ = EstG.V.Z / ACC_1G * 100.0f; // cos(angleZ) * 100
throttleAngleCorrection = THROTTLE_ANGLE_CORRECTION * constrain(100 - cosZ, 0, 100) >>3; // 16 bit ok: 200*150 = 30000
#endif
}
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
#define BARO_TAB_SIZE 21
#define ACC_Z_DEADBAND (ACC_1G>>5) // was 40 instead of 32 now
#define applyDeadband(value, deadband) \
if(abs(value) < deadband) { \
value = 0; \
} else if(value > 0){ \
value -= deadband; \
} else if(value < 0){ \
value += deadband; \
}
#if BARO
uint8_t getEstimatedAltitude(){
int32_t BaroAlt;
static float baroGroundTemperatureScale,logBaroGroundPressureSum;
static float vel = 0.0f;
static uint16_t previousT;
uint16_t currentT = micros();
uint16_t dTime;
dTime = currentT - previousT;
if (dTime < UPDATE_INTERVAL) return 0;
previousT = currentT;
if(calibratingB > 0) {
logBaroGroundPressureSum = log(baroPressureSum);
baroGroundTemperatureScale = (baroTemperature + 27315) * 29.271267f;
calibratingB--;
}
// baroGroundPressureSum is not supposed to be 0 here
// see: https://code.google.com/p/ardupilot-mega/source/browse/libraries/AP_Baro/AP_Baro.cpp
BaroAlt = ( logBaroGroundPressureSum - log(baroPressureSum) ) * baroGroundTemperatureScale;
alt.EstAlt = (alt.EstAlt * 6 + BaroAlt * 2) >> 3; // additional LPF to reduce baro noise (faster by 30 µs)
#if (defined(VARIOMETER) && (VARIOMETER != 2)) || !defined(SUPPRESS_BARO_ALTHOLD)
//P
int16_t error16 = constrain(AltHold - alt.EstAlt, -300, 300);
applyDeadband(error16, 10); //remove small P parametr to reduce noise near zero position
BaroPID = constrain((conf.pid[PIDALT].P8 * error16 >>7), -150, +150);
//I
errorAltitudeI += conf.pid[PIDALT].I8 * error16 >>6;
errorAltitudeI = constrain(errorAltitudeI,-30000,30000);
BaroPID += errorAltitudeI>>9; //I in range +/-60
// projection of ACC vector to global Z, with 1G subtructed
// Math: accZ = A * G / |G| - 1G
int16_t accZ = (imu.accSmooth[ROLL] * EstG32.V.X + imu.accSmooth[PITCH] * EstG32.V.Y + imu.accSmooth[YAW] * EstG32.V.Z) * invG;
static int16_t accZoffset = 0;
if (!f.ARMED) {
accZoffset -= accZoffset>>3;
accZoffset += accZ;
}
accZ -= accZoffset>>3;
applyDeadband(accZ, ACC_Z_DEADBAND);
static int32_t lastBaroAlt;
//int16_t baroVel = (alt.EstAlt - lastBaroAlt) * 1000000.0f / dTime;
int16_t baroVel = (alt.EstAlt - lastBaroAlt) * (1000000 / UPDATE_INTERVAL);
lastBaroAlt = alt.EstAlt;
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
applyDeadband(baroVel, 10); // to reduce noise near zero
// Integrator - velocity, cm/sec
vel += accZ * ACC_VelScale * dTime;
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * 0.985f + baroVel * 0.015f;
//D
alt.vario = vel;
applyDeadband(alt.vario, 5);
BaroPID -= constrain(conf.pid[PIDALT].D8 * alt.vario >>4, -150, 150);
#endif
return 1;
}
#endif //BARO
复制代码
欢迎光临 (http://www.51hei.com/bbs/)
Powered by Discuz! X3.1