一、绪论1、项目研究背景及意义
由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,较其它仪器更卫生,更耐潮湿、粉尘、高温、腐蚀气体等恶劣环境,具有少维护、不污染、高可靠、长寿命等特点。因此可广泛应用于纸业、矿业、电厂、化工业、水处理厂、污水处理厂、农业用水、环保检测、食品(酒业、饮料业、添加剂、食用油、奶制品)、防汛、水文、明渠、空间定位、公路限高等行业中。可在不同环境中进行距离准确度在线标定,可直接用于水、酒、糖、饮料等液位控制,可进行差值设定,直接显示各种液位罐的液位、料位高度。因此,超声在空气中测距在特殊环境下有较广泛的应用。利用超声波检测往往比较迅速、方便、计算简单、易于实现实时控制,并且在测量精度方面能达到工业实用的指标要求,因此为了使移动机器人能够自动躲避障碍物行走,就必须装备测距系统,以使其及时获取距障碍物的位置信息(距离和方向)。因此超声波测距在移动机器人的研究上得到了广泛的应用。同时由于超声波测距系统具有以上的这些优点,因此在导盲仪的研制方面也得到了广泛的应用。
二、总体设计方案及论证1、总体方案设计
本设计包括硬件和软件设计两个部分。模块划分为数据采集、按键控制、四位数码管显示、报警等子模块。电路结构可划分为:超声波传感器、蜂鸣器、单片机控制电路。就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。单片机应用系统也是有硬件和软件组成。硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。系统采用STC89C52单片机作为核心控制单元,当测得的距离小于设定距离时,主控芯片将测得的数值与设定值进行比较处理。然后控制蜂鸣器报警。系统总体的设计方框图如图2-1所示。
图2-1 系统方框图
三、硬件实现及单元电路设计1、主控制模块
主控制最小系统电路如图3-1所示。

图3-1 最小系统
硬件电路总设计见图3-2,从以上的分析可知在本设计中要用到如下器件: STC89C52、超声波传感器、按键、四位数码管、蜂鸣器等一些单片机外围应用电路。其中D1为电源工作指示灯。电路中用到3个按键,一个是设定键, 一个加键,一个减键。

图3-2 总设计电路图
2、 电源设计
电源部分的设计采用3节5号干电池4.5V供电。
3、 超声波测试模块
超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-500cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图4。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

图3-3 超声波模块实物图
超声波探测模块HC-SR04的使用方法如下:IO口触发,给Trig口至少10us的高电平,启动测量;模块自动发送8个40Khz的方波,自动检测是否有信号返回;有信号返回,通过IO口Echo输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间,测试距离=(高电平时间*340)/ 2,单位为m。程序中测试功能主要由两个函数完成。
实现中采用定时器0进行定时测量,8分频,TCNTT0预设值0XCE,当timer0溢出中断发生2500次时为125ms,计算公式为(单位:ms):
T = (定时器0溢出次数 * (0XFF - 0XCE))/ 1000
其中定时器0初值计算依据分频不同而有差异。
4、 测距分析
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2
最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物面的距离s,即:s=340t/2。
只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。如图12所示:
图3-4 超声波的测距原理

(3-1)

(3-2)
式中:L---两探头之间中心距离的一半.
又知道超声波传播的距离为:

( 3-3)
式中:v—超声波在介质中的传播速度;
t—超声波从发射到接收所需要的时间.
将(3—2)、(3—3)代入(3-1)中得:

( 3-4)
其中,超声波的传播速度v在一定的温度下是一个常数(例如在温度T=30度时,V=349m/s);当需要测量的距离H远远大于L时,则(3—4)变为:

( 3-5)
所以,只要需要测量出超声波传播的时间t,就可以得出测量的距离H.
5、 时钟电路的设计
XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。
因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,一个振荡周期为1/12us,故而一个机器周期为1us。如图3-5所示为时钟电路。

图3-5 时钟电路图
6、 复位电路的设计
复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。本设计采用的是自动复位电路。如图3-6示为复位电路。

图3-6 复位电路图
7、 声音报警电路的设计
如下图所示,用一个Speaker和三极管、电阻接到单片机的P13引脚上,构成声音报警电路,如图3-7示为声音报警电路。

图3-7 声音报警电路图
8、显示模块
显示模块采用数码管显示接口电路如图3-8
图3-8 数码管电路
四、软件设计 1、主程序工作流程图
按上述工作原理和硬件结构分析可知系统主程序工作流程图如下图4-1所示;

图4-1主程序工作流程图
2、超声波探测程序流程图

图4-2 超声波探测程序流程图
五、总结本设计研究了一种基于单片机技术的超声波导盲仪系统。该系统通过以STC89C52单片机为工作处理器核心,超声波传感器,它是一种新颖的被动式超声波探测器件,能够以非接触测出前方物体距离,并将其转化为相应的电信号输出.该报警器的最大特点就是使用户能够操作简单、易懂、灵活;且安装方便、智能性高、误报率低。随着现代人们安全意识的增强以及科学技术的快速发展,相信超声波导盲仪必将在更广阔的人群中得到更深层次的应用。
六、参考文献 [1] 吴政江. 单片机控制红外线防盗报警器[J]. 锦州师范学院学报, 2001.
[2] 宋文绪. 传感器与检测技术[M]. 北京: 高等教育出版社, 2004.
[3] 余锡存. 单片机原理及接口技术[M]. 西安: 西安电子科技大学出版社, 2000.
[4] 唐桃波, 陈玉林. 基于AT89C51的智能无线安防报警器 [J]. 电子设计应用, 2003, 5(6): 49~51.
[5] 李全利. 单片机原理及接口技术[M]. 北京: 北京航空航天大学出版社, 2004.
[6] 薛均义, 张彦斌. MCS-51系列单片微型计算机及其应用[M]. 西安: 西安交通大学出版社, 2005.
[7] 徐爱钧, 彭秀华. 单片机高级语言C51应用程序设计[M]. 北京: 北京航空航天大学出版社, 2006.
[8] 康华光. 电子技术基础(模拟部分)[M]. 北京: 高等教育出版社, 2004.
附 录附件1:原理图
附件2:程序