找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 1263|回复: 0
打印 上一主题 下一主题
收起左侧

关于二极管的电容效应、等效电路、开关特性解释

[复制链接]
跳转到指定楼层
楼主
ID:807588 发表于 2020-9-24 16:59 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
一、二极管的电容效应

二极管具有电容效应。它的电容包括势垒电容CB和扩散电容CD。

1.势垒电容CB(Cr)

由于PN结内缺少导电的载流子,其电导率很低,相当于介质;而PN结两侧的P区、N区的电导率高,相当于金属导体。从这一结构来看,PN结等效于一个电容器。

事实上,当PN结两端加正向电压时,PN结变窄,结中空间电荷量减少,相当于电容"放电",当PN结两端加反向电压时,PN结变宽,结中空间电荷量增多,相当于电容"充电"。这种现象可以用一个电容来模拟,称为势垒电容。势垒电容与普通电容不同之处,在于它的电容量并非常数,而是与外加电压有关。当外加反向电压增大时,势垒电容减小;反向电压减小时,势垒电容增大。目前广泛应用的变容二极管,就是利用PN结电容随外加电压变化的特性制成的。

2.扩散电容CD

PN结正向偏置时,N区的电子向P区扩散,在P区形成一定的非平衡载流子的浓度分布,即靠近PN结一侧浓度高,远离PN结的一侧浓度低。显然,在P区积累了电子,即存贮了一定数量的负电荷;同样,在N区也积累了空穴,即存贮了一定数的正电荷。当正向电压加大时,扩散增强,这时由N区扩散到P区的电子数和由P区扩散到N区的空穴数将增多,致使在两个区域内形成了电荷堆积,相当于电容器的充电。相反,当正向电压减小时,扩散减弱,即由N区扩散到P区的电子数和由P区扩散到N区的空穴数减少,造成两个区域内电荷的减少,、这相当于电容器放电。因此,可以用一个电容来模拟,称为扩散电容。

总之,二极管呈现出两种电容,它的总电容Cj相当于两者的并联,即Cj=CB + CD。二极管正向偏置时,扩散电容远大于势垒电容 Cj≈CD ;而反向偏置时,扩散电容可以忽略,势垒电容起主要作用,Cj≈CB 。

二、二极管的等效电路

二极管是一个非线性器件,对于非线性电路的分析与计算是比较复杂的。为了使电路的分析简化,可以用线性元件组成的电路来模拟二极管。使线性电路的电压、电路关系和二极管外特性近似一致,那么这个线性电路就称为二极管的等效电路。显然等效电路是在一定条件下的近似。

二极管应用于直流电路时,常用一个理想二极管模型来等效,可把它看成一个理想开关。正偏时,相当于"开关"闭合(ON),电阻为零,压降为零;反偏时,相当于"开关"断开(OFF),电阻为无限大,电流为零。由于理想二极管模型突出表现了二极管最基本的特性--单向导电性,所以广泛应用于直流电路及开关电路中。

在直流电路中如果考虑到二极管的电阻和门限电压的影响。在二极管两端加直流偏置电压和工作在交流小信号的条件下,可以用简化的电路来等效。

三、二极管的开关特性

二极管正偏时导通,相当于开关的接通;反偏时截止相当于开关的断开,表明二极管具有开关特性。不过一个理想的开关,在接通时开关本身电阻为零,压降为零,而断开时电阻为无穷大,电流为零,而且要求在高速开关时仍具有以上特性,不需要开关时间。但实际二极管作为开关运用,并不是太理想的。因为二极管正向导通时,其正向电阻和正向降压均不为零;反向戳止时,其反向电阻也不是无穷大,反向电流也不为零。并且二极管开、关状态的转换需要一定时间.这就限制了它的开关速度。因此作开关时,应选用正向电阻RF小、反向电阻RR大、开关时间小的开关二极管。

续流二极管的作用如下:快恢复二极管主要用作续流二极管,与快速开关三极管并联后面带感性负载,如Buck,Boost变换器的电感、变压器和电机,这些电路大部分是用恒脉脉宽调制控制,感性负载决定了流过续流二极管的电流是连续的,三极管开通时,续流支路要截止以防短路。

二极管的开关过程可分为四部分:

A.T1导通时二极管阻断;

B.阻断到导通时间;开通;

C.T1关断,二极管导通;

D.导通到关断瞬间;关断。

A. 阻断

MOFET导通时,二极管两端的反压是Vin。与所有的半导体一样,二极管的阳极到阴极有一个小电流(耐电流IR),漏电流由阻断电压,二极管芯片工作温度和二极管制作技术决定。反向电压导致的总功率损耗是:

PSP=VIN·IR

B. 开通

三极管T1关断瞬间,电感电流iL保持不变。二极管两端电压逐渐减小,电流逐渐上升。D1的电流上升时间等于T1的电流下降时间。关断时在pn结存储的大量电荷被载流子带走,使得电流上升时pn结的电阻减小,二极管开通时有电压尖峰,由芯片温度、-diF/dt和芯片工艺决定。

正向电压尖峰与反向电压相比很小(<50V),应用时不影响二极管的工作。但是二极管的开通电压尖峰增加了三极管的电压应力和关断损耗。

电压尖峰VFR决定了二极管的开通捌耗。这些损耗随开关频率线性增加。

C. 通态

二极管导通正向电流lF,pn结的门限电压和半导体的电阻决定正向压降VF。这个电压由芯片温度、正向电流IF和制造工艺决定。

利用数据手册中的VTO和rT可以计算正向压降和通态损耗:

VF=rT·IF+VTO

计算出来的损耗只是近似值,因为VTO和rT随温度变化,而给出的只是在一定温度下(TVJM的参考值。

D. 关断

与通态特性不同,高频应用时二极管的选择是否合适主要取决于关断特性的参数,三极管开通时,电流IF的变化率等于三极管电流上升率di/dt。如果使用MOSFET或IGBT,其-diF/dt很容易超过1000A/μs。前面提到,二极管恢复阻断能力前必须去除通态时存储在pn结的载流子。这就会产生反向恢复电流,其波形取决于芯片温度、正向电流IF,-diF/dt和制造工艺。

正向特性相同的金掺杂和铂掺杂外延型二极管不同温度下的反向恢复电流。

相同温度下不同制造工艺的二极管的反向恢复特性明显不同。

铂掺杂二极管反向恢复电流的减小速度很快,可控少数载流子的金掺杂二极管的恢复特性较软。

恢复电流减小得很快,线路中分布电感导致的电压尖峰越高。如果最大电压超过三极管的耐压值,就必须使用吸收电路以保障设备的安全工作。而且过高的du/dt会导致EMI/RFI问题,在RFI受限的地方要使用复杂的屏蔽。

二极管的反向恢复电流不仅会增加二极管的关断损耗。还会增加三极管的开通损耗,因为它也是二极管的反向电流。三极管开通电流是电感电流加上二极管的反向恢复电流,而且开通时间受trr影响会增大。

首先,软恢复特性的金掺杂二极管的电压尖峰较小和反向恢复电流较小。因此二极管有低关断损耗。其次,低反向恢复电流可减小三极管的开通损耗。因此,二极管的选择直接决定了两个器件的功率损耗。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|51黑电子论坛 |51黑电子论坛6群 QQ 管理员QQ:125739409;技术交流QQ群281945664

Powered by 单片机教程网

快速回复 返回顶部 返回列表