找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 2204|回复: 1
收起左侧

求一欧拉角与四元数算程序(希望有注释)

[复制链接]
ID:337204 发表于 2018-5-24 12:27 | 显示全部楼层 |阅读模式
求一欧拉角与四元数算程序(希望有注释)

回复

使用道具 举报

ID:574341 发表于 2019-7-9 13:13 | 显示全部楼层
所以在软件解算中,我们要首先把加速度计采集到的值(三维向量)转化为单位向量,即向量除以模,传入参数是陀螺仪x、y、z值和加速度计x、y、z值:
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)
{ float norm;
float vx, vy, vz; float ex, ey, ez;           
norm = sqrt(ax*ax + ay*ay + az*az);      
ax = ax / norm;
ay = ay / norm;
az = az / norm;  
下面把四元数换算成方向余弦中的第三行的三个元素。刚好vx、vy、vz 。其实就是上一次的欧拉角(四元数)的机体坐标参考系换算出来的重力的单位向量。
estimated direction of gravity vx = 2*(q1*q3 - q0*q2);
vy = 2*(q0*q1 + q2*q3);
vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
axyz是机体坐标参照系上,加速度计测出来的重力向量,也就是实际测出来的重力向量。
axyz是测量得到的重力向量,vxyz是陀螺积分后的姿态来推算出的重力向量,它们都是机体坐标参照系上的重力向量。
那它们之间的误差向量,就是陀螺积分后的姿态和加计测出来的姿态之间的误差。
向量间的误差,可以用向量叉积(也叫向量外积、叉乘)来表示,exyz就是两个重力向量的叉积。
这个叉积向量仍旧是位于机体坐标系上的,而陀螺积分误差也是在机体坐标系,而且叉积的大小与陀螺积分误差成正比,正好拿来纠正陀螺。(你可以自己拿东西想象一下)由于陀螺是对机体直接积分,所以对陀螺的纠正量会直接体现在对机体坐标系的纠正。
integral error scaled integral gain exInt = exInt + ex*Ki;
eyInt = eyInt + ey*Ki;
ezInt = ezInt + ez*Ki;
用叉积误差来做PI修正陀螺零偏
integral error scaled integral gain exInt = exInt + ex*Ki;
eyInt = eyInt + ey*Ki;
ezInt = ezInt + ez*Ki;  // adjusted gyroscope measurements
gx = gx + Kp*ex + exInt;
gy = gy + Kp*ey + eyInt;
gz = gz + Kp*ez + ezInt;
四元数微分方程,其中T为测量周期,为陀螺仪角速度,以下都是已知量,这里使用了一阶龙哥库塔求解四元数微分方程:
integrate quaternion rate and normalise
q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;
q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;
q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;
q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;   
最后根据四元数方向余弦阵和欧拉角的转换关系,把四元数转换成欧拉角,所以有:
ANGLE.Yaw = atan2(2 * q1 * q2 + 2 * q0 * q3, -2 * q2*q2 - 2 * q3* q3 + 1)* 57.3; // yaw
ANGLE.Pitch = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch
ANGLE.Roll= atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // roll
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|51黑电子论坛 |51黑电子论坛6群 QQ 管理员QQ:125739409;技术交流QQ群281945664

Powered by 单片机教程网

快速回复 返回顶部 返回列表