一、瞬时无功与FFT计算谐波电流区别
APF谐波电流常用计算方法是瞬时无功,对于没有中性线系统通常要计算正序负序两种分量,每次谐波都要计算。然而国内的主流算法确实FFT。上网查了查,发现没有谁说明一下这两种算法计算谐波电流有什么区别。
瞬时无功是基于旋转坐标系的计算方法,就是假定电流在该旋转坐标系下映射为常数。这样问题就来了,如果只建立正序旋转坐标系,那只能提取正序电流,要是系统还有负序电流就漏掉了,所以通常还需要建立各次谐波负序旋转坐标系。所以说基于瞬时无功理论计算就是知道谐波电流就含有这些分量,我就对这些分量分别建立旋转坐标系。
而FFT理论却完全不同了,FFT讲的是周期性信号可以分解为一系列正弦波的叠加,所以只要你信号是周期性的,ok,不管你正序还是负序,我做FFT分解就可以了,分解出来各次谐波分量就是包含了所有谐波,不需要考虑什么正负序问题。
这样看来,FFT尤其明显优势,但FFT有一个问题就是计算速度慢,需要一个周波数据,而瞬时无功则不需要,即你这个变化只要跟着我旋转坐标系走,就能通过低通滤波很快提取出来。
因此两种算法各有特点,剩下的事情就是根据实际情况进行选取了。
二、FFT谐波电流计算
基二频域算法
#include "math.h"
#include "stdio.h"
struct compx
{ double real;
double imag;
} compx
struct compx EE(struct compx b1,struct compx b2)
{
struct compx b3;
b3.real=b1.real*b2.real-b1.imag*b2.imag;
b3.imag=b1.real*b2.imag+b1.imag*b2.real;
return(b3);
}
void FFT(struct compx *xin,int N)
{
int f,m,LH,nm,i,k,j,L;
double p , ps
int le,B,ip;
float pi;
struct compx v,w,t;
LH=N/2;
f=N;
for(m=1;(f=f/2)!=1;m++){;}
{
for(L=m;L>=1;L--)
{
le=pow(2,L);
B=le/2;
pi=3.14159;
for(j=0;j<=B-1;j++)
{
p=pow(2,m-L)*j;
ps=2*pi/N*p;
w.real=cos(ps);
w.imag=-sin(ps);
for(i=j;i<=N-1;i=i+le)
{
ip=i+B;
t=xin[i];
xin[i].real=xin[i].real+xin[ip].real;
xin[i].imag=xin[i].imag+xin[ip].imag;
xin[ip].real=xin[ip].real-t.real;
xin[ip].imag=xin[ip].imag-t.imag;
xin[ip]=EE(xin[ip],w);
}
}
}
}
nm=N-2;
j=N/2;
for(i=1;i<=nm;i++)
{
if(i
k=LH;
while(j>=k){j=j-k;k=k/2;}
j=j+k;
}
}
#include
#include
#include
float result[257];
struct compx s[257];
int Num=16;
const float pp=3.14159;
main()
{
int i;
for(i=0;i<16;i++)
{
s[i].real=sin(pp*i/32);
s[i].imag=0;
}
FFT(s,Num);
for(i=0;i<16;i++)
{
printf("%.4f",s[i].real);
printf("+%.4fj\n",s[i].imag);
result[i]=sqrt(pow(s[i].real,2)+pow(s[i].imag,2));
}
三、快速开方算法
有人在Quake III的源代码里面发现这么一段用来求平方根的代码:
float SquareRootFloat(float number) {
long
i;
float x,
y;
const float
f = 1.5F;
x = number *
0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f3759df - ( i >> 1
); //注意这一行
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
y = y * ( f - ( x * y * y ) );
return
number * y;
}
x5f3759df? 这是个什么东西? 学过数值分析就知道,算法里面求平方根一般采用
的是无限逼近的方法,比如牛顿迭代法,抱歉当年我数值分析学的太烂,也讲不清楚
。简单来说比如求5的平方根,选一个猜测值比如2,那么我们可以这么算
/2 = 2.5; 2.5+2/2 = 2.25; 5/2.25 = xxx; 2.25+xxx/2 = xxxx
...
这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的
。而卡马克的不同之处在于,他选择了一个神秘的猜测值0x5f3759df作为起始,使得
整个逼近过程收敛速度暴涨,对于Quake III所要求的精度10的负三次方,只需要一
次迭代就能够得到结果。
好吧,如果这还不算牛b,接着看。
普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的
这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个
最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?
传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始
值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是
卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。
最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数
字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴
力得出的数字是0x5f375a86。
Lomont为此写下一篇论文,"Fast Inverse Square Root"。
我把这个函数用C#就行了一下改写:
代码如下:
using System;
using System.Collections.Generic;
using System.Text;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Carmark's method:");
Console.WriteLine(SquareRootFloat(3.0f).ToString());
Console.WriteLine("Use Math.Sqrt() method:");
Console.WriteLine(((float)Math.Sqrt(3.0)).ToString());
Console.Read();
}
private static float SquareRootFloat(float number)
{
long i;
float x, y;
const float f = 1.5F;
x = number * 0.5F;
y = number;
unsafe
{
i = * ( long * ) &y;
i = 0x5f3759df - ( i >> 1
); //注意这一行
y = * ( float * ) &i;
}
y = y * ( f - ( x * y * y ) );
y = y * ( f - ( x * y * y ) );
return number * y;
}
}
}
第32、33行用了两次牛顿迭代法,以达到一定的精度,当然你也可以自己控制精度,求出来的是y的平方根的倒数,所以最后返回为number*y.
SquareRootFloat函数最关键的一句就是 i=0x5f3759df-(i>>1);
以下是对它的部分解释:
牛顿迭代法最关键的地方在于估计第一个近似根。如果该近似根与真根足够靠近的话,那么只需要少数几次迭代,就可以得到满意的解。
接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:
i = 0x5f3759df - (i >> 1); //
计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的:float类型的数据在32位系统上是这样表示的。
bits:31 30 ... 031:符号位30-23:共8位,保存指数(E)22-0:共23位,保存尾数(M)
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^(-E/2)。现在就十分清晰了。语句i>>1其工作就是将指数除以2,实现2^(E/2)的部分。而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。 |