找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 2152|回复: 0
打印 上一主题 下一主题
收起左侧

PID算法

[复制链接]
跳转到指定楼层
楼主
ID:138551 发表于 2016-9-6 00:10 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
     在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
   PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
  
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
  
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-stateError)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差
  
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会 出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系
统在调节过程中的动态特性。

1.比例调节依据"偏差的大小"来动作,它的输出与输入偏差的大小成比例.比例调节及时,有力,但有余差.它用比例度来表示其作用的强弱,比例度越小,调节作用越强,相反,比例度越大,调节作用就越弱;比例作用太强时,会引起震荡.
2.积分调节依据"偏差是否存在"来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止,其作用是消除余差.但积分作用使最大动偏差增大,延长了调节时间.它用积分时间T来表示其作用的强弱,T越小,积分作用越强,但积分作用太强时,也会引起震荡.
3.微分调节依据"偏差变化的速度"来动作.它的输出与输入偏差变化的速度成比例,其效果是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象(温度)有很好的效果.它使调节过程偏差减小,时间缩短,余差也减小(但不能消除).它用微分时间TdL来表示其作用的强弱,Td大,作用强,但Td太大,也会引起振荡.

PID控制器的参数整定
PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:
(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到
PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低

经验告诉我们,根据具体的龙头和水压,温度高1度,热水需要关小一定的量,比如说,关小一格。换句
话说,控制量和控制偏差成比例关系,这就是经典的比例控制规律:控制量=比例控制增益* 控制偏差,偏差越大,控制量越大。控制偏差就是实际测量值和设定值或目标值之差。在比例控制规律下,偏差反向,控制量也反向。也就是说,如果淋浴水温要求为40度,实际水温高于40度时,热水龙头向关闭的方向变化;实际水温低于40度时,热水龙头向开启的方向变化。但是比例控制规律并不能 保证水温能够精确达到 40度。在实际生活中,人们这时对热水龙头作微调,只要水温还不合适,就一点一点地调节,直到水温合适为止。这种只要控制偏差不消失就渐进微调的控制规律,在控制里叫积分控制规律,因为控制量和控制偏差在时间上的累积成正比,其比例因子就称为积分控制增益。工业上常用积分控制增益的倒数,称其为积分时间常数,其物理意义是偏差恒定时,控制量加倍所需的时间。这里要注意的是,控制偏差有正有负,全看实际测量值是大于还是小于设定值,所以只要控制系统是稳定的,也就是实际测量值最终会稳定在设定值上,控制偏差的累积不会是无穷大的。这里再啰嗦一遍,积分控制的基本作用是消除控制偏差的余差(也叫残差)

PID 控制中,
积分控制的特点是:只要还有余差(即残余的控制偏差)存在,积分控制就按部就班地逐渐增加控制作用,直到余差消失。所以积分的效果比较缓慢,除特殊情况外,作为基本控制作用,缓不救急。
微分控制的特点是:尽管实际测量值还比设定值低,但其快速上扬的冲势需要及早加以抑制,否则,等到实际值超过设定值再作反应就晚了,这就是微分控制施展身手的地方了。作为基本控制使用,微分控制只看趋势,不看具体数值所在,所以最理想的情况也就是把实际值稳定下来,但稳定在什么地方就要看你的运气了,所以微分控制也不能作为基本控制作用。比例控制没有这些问题,比例控制的反应快,稳定性好,是最基本的控制作用,是 “皮”,积分、微分控制是对比例控制起增强作用的,极少单独使用,所以是“毛”。在实际使用中比例和积分一般一起使用,比例承担主要的控制作用,积分帮助消除余差。微分只有在被控对象反应迟缓,需要在开始有所反应时,及早补偿,才予以采用。只用比例和微分的情况
很少见。
连续控制的精度是开关控制所不可比拟的,但连续控制的高精度也是有代价的,这就是稳定性问题。控制
增益决定了控制作用对偏差的灵敏度。既然增益决定了控制的灵敏度,那么越灵敏岂不越好?非也。实际中到底多少增益才是最合适的,理论上有很多计算方法,但实用中一般是靠经验和调试来摸索最佳增益,业内行话叫参数整定。如果系统响应在控制作用后面拖拖沓沓,大幅度振荡的话,那一般是积分太过;如果系统响应非常神经质,动不动就打摆子,呈现高频小幅度振荡的话,那一般是微分有点过分。中频振荡当然就是比例的问题了。不过各个系统的频率都是不一样的,到底什么算高频,什么算低频,
再具体说起来,参数整定有两个路子。
一是首先调试比例增益以保证基本的稳定性,然后加必要的积分以消除余差,只有在最必要的情况下,比如反映迟缓的温度过程或容量极大的液位过程,测量噪声很低,才加一点微分。这是“学院派”的路子,在大部分情况下很有效。但是工业界有一个“歪路子”:用非常小
的比例作用,但大大强化积分作用。这个方法是完全违背控制理论的分析的,但在实际中却是行之有效,原因在于测量噪声严重,或系统反应过敏时,积分为主的控制规律动作比较缓和,不易激励出不稳定的因素,尤其是不确定性比较高的高频部分
在很多情况下,在初始PID参数整定之后,只要系统没有出现不稳定或性能显著退化,一般不会去重新整定。但是要是系统不稳定了怎么办呢?由于大部分实际系统都是开环稳定的,也就是说,只要控制作用恒定不变,系统响应最终应该稳定在一个数值,尽管可能不是设定值,所以对付不稳定的第一个动作都是把比例增益减小,根据实际情况,减小1/3、1/2甚至更多,同时加大积分时间常数,常常成倍地加,再就是减小甚至取消微分控制作用。如果有前馈控制,适当减小前馈增益也是有用的。在实际中,系统性能不会莫名其妙地突然变坏,上述“救火”式重新整定常常是临时性的,等生产过程中的机械或原料问题消除后
,参数还是要设回原来的数值,否则系统性能会太过“懒散”。
对于新工厂,系统还没有投运,没法根据实际响应来整定,一般先估计一个初始参数,在系统投运的过程中,对控制回路逐个整定。我自己的经验是,对于一般的流量回路,比例定在 0.5左右,积分大约1分钟,微分为0,这个组合一般不致于一上来就出大问题。温度回路可以从2、5、0.05开始,液位回路从5、10、0开始,气相压力回路从10、20、0开始。既然这些都是凭经验的估计,那当然要具体情况具体分析,

比例控制的特点是:偏差大,控制作用就大。但在实际中有时还嫌不够,最好偏差大的时候,比例增益也大,进一步加强对大偏差的矫正作用,及早把系统拉回到设定值附近;偏差小的时候,当然就不用那么急吼吼,慢慢来就行,所以增益小一点,加强稳定性。这就是双增益PID(也叫双模式PID)的起源。想想也对,高射炮瞄准敌机是一个控制问题。如果炮管还指向离目标很远的角度,那应该先尽快地把炮管转到目标角度附近,动作猛一点才好;但炮管指向已经目标很近了,就要再慢慢地精细瞄准。工业上也有很多类似的问题。双增益PID的一个特例是死区PID(PID with dead band),小偏差时的增益为零,也就是说,测量值和设定值相差不大的时候,就随他去,不用控制。这在大型缓冲容器的液位控制里用得很多。本来缓冲容器就是缓冲流量变化的,液位到底控制在什么地方并不紧要,只要不是太高或太低就行。但是,从缓冲容器流向下游装置的流量要尽可能稳定,否则下游装置会受到不必要的扰动。死区PID对这样的控制问题是最合适的。但是天下没有免费的午餐。死区PID的前提是液位在一般情况下会“自动”稳定在死区内,如果死区设置不当,或系统经常受到大幅度的扰动,死区内的“无控”状态会导致液位不受限制地向死区边界“挺进”,最后进入“受控”区时,控制作用过火,液位向相反方向不受限制地“挺进”,最后的结果是液位永远在死区的两端振荡,而永远不会稳定下来,双增益PID也有同样的问题,只是比死区PID好一些,毕竟只有“强控制”和“弱控制”的差别,而没有“无控区”。在实用中,双增益的内外增益差别小于2:1没有多大意义,大于 5:1就要注意上述的持续振荡或hunting的问题。双增益或死区PID的问题在于增益的变化是不连续的,控制作用在死区边界上有一个突然的变化,容易诱发系统的不利响应,平方误差PID就没有这个问题。误差一经平方,控制量对误差的曲线就成了抛物线,同样达到“小偏差小增益、大偏差大增益”的效果,还没有和突然的不连续的增益变化。但是误差平方有两个问题:一是误差接近于零的时候,增益也接近于零,回到上面死区PID的问题;二是很难控制抛物线的具体形状,或者说,很难制定增益在什么地方拐弯。对于第一个问题,可以在误差平方PID上加一个基本的线性PID,是零误差是增益不为零;对于后一个问题,就要用另外的模块计算一个连续变化的增益了
。具体细节比较琐碎,将偏差送入一个分段线性化(也就是折线啦)的计算单元,然后将计算结果作为比例增益输出到PID控制器,折线的水平段就对应予不同的增益,而连接不同的水平段的斜线就对应于增益的连续变化。通过设置水平段和斜线段的折点,可以任意调整变增益的曲线。要是“野心”大一点,再加几个计算单元,可以做出不对称的增益,也就是升温时增益低一点,降温时增益高一点,以处理加热过程中常见的升温快、降温慢的问题。
双增益或误差平方都是在比例增益上作文章,同样的勾当也可以用在积分和微分上。
  更极端的一种PID规律叫积分分离 PID,其思路是这样的:比例控制的稳定性好,响应快,所以偏差大的时候,把PID中的积分关闭掉;偏差小的时候,精细调整、消除余差是主要问题,所以减弱甚至关闭比例作用,而积分作用切入控制。概念是好的,但具体实施的时候,有很多无扰动切换的问题。这些变态的PID在理论上很难分析系统的稳定性,但在实用中解决了很多困难的问题。大言不惭一句,这些PID本人在实际中都用过。


评分

参与人数 1黑币 +50 收起 理由
admin + 50 共享资料的黑币奖励!

查看全部评分

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏4 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|51黑电子论坛 |51黑电子论坛6群 QQ 管理员QQ:125739409;技术交流QQ群281945664

Powered by 单片机教程网

快速回复 返回顶部 返回列表