找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 4725|回复: 0
收起左侧

MOSFET在开关电路中的应用

[复制链接]
ID:114320 发表于 2016-4-21 22:06 | 显示全部楼层 |阅读模式
摘要

在一些简单的小功率开关电路中,利用双极结型三极管,作为开关管时可能会遇到输入电流不足,BJT工作状态无法正确配置,进而无法实现电路功能的情况。对于这种BJT流控器件的限制,事实上可以采用MOSFET压控器件来代替。


在一些简单的小功率开关电路中,利用双极结型三极管(BJT,Bipolar Junction Transistor)作为开关管时可能会遇到输入电流不足,BJT工作状态无法正确配置,进而无法实现电路功能的情况。

例如图1所示的一个使用BJT SS8050LT作为开关管的加热控制电路,BJT为共射极连接。将BJT视为一个二端口网络,输入端口为电阻 与NTC型热敏电阻 构成的基极分压回路,参数分别为基极-发射极电压 以及流入基极的电流 ;输出端口没有连接任何负载,参数分别为集电极与发射极两端的电压 和集电极电流 。49Ω基极电阻作为发热器件,由8个390Ω电阻并联而成。


图1 BJT加热控制电路

图1所示的加热控制电路设计的功能可描述为:当环境温度为常温25℃时,热敏电阻 的阻值为10.000kΩ,基极-发射极电压,BJT未导通,电路未工作;当环境温度下降到10℃时,热敏电阻 的阻值增大至17.958kΩ,基极-发射极电压 ,BJT导通,集电极电流 流过基极电阻,电阻发热,电路正常工作。

显然,电路中BJT的工作状态需要处于饱和区内,保证电压尽可能多的电压落在基极电阻的两端,提高电阻的发热功率。根据BJT的工作原理可知,BJT的发射极和集电极均处于正向偏置的区域为饱和区。在这一区域内,一般有 ,因而集电极内电场被削弱,集电极收集载流子的能力减弱,这时电流分配关系 不再满足, 随 增加而迅速上升,如图2所示。饱和区内的 很小,称为BJT的饱和压降 ,其大小与 及 有关。图中虚线是饱和区与放大区的分界线,称为临界饱和线。对于小功率管,可以认为当(即 )时,BJT处于临界饱和(或临界放大)状态。


图2 BJT SS8050LT共射极连接时的输出特性曲线

要想使BJT工作在饱和区内,就要增大基极-发射极电压 ,而环境温度越低,热敏电阻阻值越大,从而增大 。但是必须注意到,BJT输入端口的基极分压回路电阻越大,输入电流则越小。具体来说,在BJT导通后,基极-发射极电压 ,基极分压回路总电流 ,从图1.2中可以看出,流入基极的电流 太小,BJT无法工作在正常状态下,电路功能无法实现。而且由于NTC型热敏电阻的器件选型限制,无法改用更小阻值的分压电阻来降低基极分压回路的总电阻值。

对于这种BJT流控器件的限制,可以采用MOSFET压控器件来代替。

一、原理描述

MOSFET全称为Metal-Oxide-Semiconductor Field Effect Transistor,中文名称为金属-氧化物-半导体场效应管。随着制造工艺的成熟,MOSFET兼有体积小、重量轻、耗电省、寿命长等特点。而且MOSFET还有输入阻抗高、噪声低、热稳定性好、抗辐射能力强等优点,因而获得了广泛的应用,特别是在大规模和超大规模集成电路中占有重要的地位。

作为一种场效应管(FET),MOSFET为单极型器件,即管子只有一种载流子(电子或空穴)导电。从导电载流子的带电极性来看,MOSFET有N(电子型)沟道和P(空穴型)沟道之分;按照导电沟道形成机理不同,又有增强型(E型)和耗尽型(D型)的区别。忽略MOSFET的工作原理,不同类型的管子特性比较如表3所示。


表3 各种MOSFET的特性比较

由表3中可知,在MOSFET中,N沟道增强型的转移特性有正的开启电压 ,P沟道增强型则为负的;N沟道耗尽型的转移特性有负的夹断电压 ,P沟道耗尽型则为正的。MOSFET的输出特性曲线与BJT的类似,不同的是输出端口的漏极电流 由栅源极电压 控制。因此,MOSFET是一种电压控制电流的器件,输出特性的分析也不一样。

以N沟道增强型MOSFET AO3400A举例,AO3400A的输出特性如图4所示。将曲线图分为三个区域,分别为截止区、可变电阻区、饱和区(恒流区又称放大区)。

1、截止区
当 时,导电沟道尚未形成, ,为截止工作状态。

2、可变电阻区
当 时,MOSFET处于可变电阻区,此时输出电阻 受 控制。

3、饱和区
当 ,且 时,MOSFET进入饱和区。 不随 变化,而是由栅源极电压 控制。


图4 AO3400A输出特性

二、方案论证

根据上述MOSFET的原理叙述,在上面提到的加热控制电路中应该采用N沟道增强型MOSFET代替原有的BJT,这里选择AO3400A,于是有如图5所示的MOSFET共源极放大电路。由于MOSFET是电压控制器件,所以提供合适的栅源极电压 ,就可以建立合适的静态工作点,使电路工作在正常状态。


图5 MOSFET加热控制电路

根据N沟道增强型MOSFET AO3400A的数据手册,AO3400A的开启电压在常温25℃下为 。当环境温度下降到10℃时,电路开始工作。此时NTC型热敏电阻的阻值增大至17.958kΩ,MOSFET导通,即栅源极电压 ,在这里需要将分压电阻 的阻值调整为47kΩ。随着温度的下降,栅源极电压 增大,流过发热电阻的电流 也随着 增大。

举例说明,当环境温度下降到-20℃时,热敏电阻的阻值增大至67.801kΩ,栅源极电压增大至 。使用万用表实测得到漏源极电压 ,说明MOSFET工作在可变电阻区内;同时测得漏极电流 ,可计算得到发热电阻的功率为 ,实际发热效果可靠,电路功能实现。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|51黑电子论坛 |51黑电子论坛6群 QQ 管理员QQ:125739409;技术交流QQ群281945664

Powered by 单片机教程网

快速回复 返回顶部 返回列表