专注电子技术学习与研究
当前位置:单片机教程网 >> MCU设计实例 >> 浏览文章

散列的C语言实现

作者:huqin   来源:本站原创   点击数:  更新时间:2014年03月13日   【字体:

散列是数组存储方式的一种发展,相比数组,散列的数据访问速度要高于数组,因为可以依据存储数据的部分内容找到数据在数组中的存储位置,进而能够快速实现数据的访问,理想的散列访问速度是非常迅速的,而不像在数组中的遍历过程,采用存储数组中内容的部分元素作为映射函数的输入,映射函数的输出就是存储数据的位置,这样的访问速度就省去了遍历数组的实现,因此时间复杂度可以认为为O(1),而数组遍历的时间复杂度为O(n)。

 
 

散列是能一种快速实现访问的存储方式。通常作为检索部分的数据项是整形或者字符串,当是字符串时,字符串的数量要远远大于数组的长度,这时候就会有多个字符串映射到一个存储位置的情况,这就是所谓的冲突问题,而且冲突时肯定存在的,这时候如何实现数据的存储又是需要解决的。

目前主要的解决方式有两大类,第一种采用链表的形式,将所有冲突的数据项采用链表的形式链接起来,这样搜索数据的复杂度就包含了链表的遍历问题,特别是当所有的项都链接到一个链表下时,这时候实际上就是遍历链表,复杂度并不一定有很大的进步,但是这种链表链接的方式有很高的填充率。第二种就是充分利用没有实现的存储空间,利用探测法探测空闲的空间,进而实现数据的存储,目前有三种探测方式:线性探测法、平方探测法,以及双散列法,三种方式中平方探测法运用比较多,但是都存在各种各样的优缺点,这时候的散列搜索优势就没有理想情况下那么明显。有时候甚至比遍历数组更加的慢。但是确实不失为一种处理方式。


 

映射函数可选择的比较多,其实完全可以定义自己的映射函数,但是有时候为了降低冲突的概率设置了一些比较好的映射函数,比如求和取余,或者乘以一定的系数再求和取余等。

 

本文采用平方探测法解决了冲突问题,具体的实现如下所示:

1、结构体定义

    #ifndef __HASHMAP_H_H_
    #define __HASHMAP_H_H_

    #include "list.h"

    #define TABSIZE    101

    /*状态变量*/
    typedef enum STATE{EMPTY = 0, ACTIVE = 1, DELETED = 2} State;

    /*键值结构体*/
    typedef struct _pair
    {
        char *key;
        char *value;
    }Pair_t, *Pair_handle_t;

    /*每一个实际的存储对象*/
    typedef struct _hashEntry
    {
        Pair_handle_t pair;
        State state;
    }HashEntry_t, *HashEntry_handle_t;

    /*哈希表结构体,便于创建*/
    typedef struct _hashmap
    {
        HashEntry_t *map;
        /*存储实际的存储量*/
        int size;
        /*容量*/
        int capacity;
    }Hashmap_t, *Hashmap_handle_t;

    /*隐射函数类型定义*/
    typedef int(*hashfunc)(const char *, int);

    #ifdef __cplusplus
    extern "C"
    {
    #endif

    bool alloc_hashmap(Hashmap_handle_t *hashmap, int capacity);
    bool init_hashmap(Hashmap_handle_t hashmap, int capacity);
    bool insert_hashnode(Hashmap_handle_t hashmap, const char *key, const char *value);
    Pair_handle_t search_hashnode(Hashmap_handle_t hashmap, const char *key);
    char *GetValue(Hashmap_handle_t hashmap, const char *key);
    bool delete_hashnode(Hashmap_handle_t hashmap, const char *key);
    int Length(Hashmap_handle_t hashmap);
    int Capacity(Hashmap_handle_t hashmap);
    void delete_hashmap(Hashmap_handle_t hashmap);
    void free_hashmap(Hashmap_handle_t *hashmap);
    char *key_pair(Pair_handle_t pair);
    char *value_pair(Pair_handle_t pair);
    Hashmap_handle_t copy_hashmap(Hashmap_handle_t hashmap);
    bool resize(Hashmap_handle_t hashmap);

    #ifdef __cplusplus
    }
    #endif
    #endif

实现表的分配和创建,采用了动态分配的方式实现,这样可能在性能上比不上静态数据,但是为了实现数组大小的调整,我选择了动态分配的实现方式。

    /*分配一个新的对象,可以实现自动分配*/
    bool alloc_hashmap(Hashmap_handle_t *hashmap, int capacity)
    {
        HashEntry_handle_t temp = NULL;
        Hashmap_t * map = NULL;

        if(*hashmap == NULL)
        {
            /*分配一个散列对象*/
            map = (Hashmap_handle_t)malloc(sizeof(Hashmap_t));
            if(map == NULL)
                return false;
            /*指针指向当前对象*/
            *hashmap = map;
            map = NULL;

            /*分配一个数组空间,大小可以控制*/
            temp = (HashEntry_handle_t)malloc(
                sizeof(HashEntry_t)*capacity);
            if(temp != NULL)
            {
                /*散列对象的指针指向数组*/
                (*hashmap)->map = temp;
                temp = NULL;
                /*设置参数*/
                (*hashmap)->capacity = capacity;
                (*hashmap)->size = 0;
                /*初始化分配的数组空间*/
                Tabinital((*hashmap)->map,capacity);
                return true;
            }
        }
        return false;
    }

    /*初始化一个新的对象,这个对象已经创建,只是没有初始化而已*/
    bool init_hashmap(Hashmap_handle_t hashmap, int capacity)
    {
        HashEntry_handle_t temp = NULL;
       
        if(hashmap != NULL)
        {
            /*分配数组空间*/
            temp = (HashEntry_handle_t)malloc(
                    sizeof(HashEntry_t)*capacity);
            if(temp != NULL)
            {
                /*完成对象的填充操作*/
                hashmap->map = temp;
                temp = NULL;
                hashmap->capacity = capacity;
                hashmap->size = 0;
                /*初始化数组对象*/
                Tabinital(hashmap->map,capacity);
                return true;
            }
        }
        return false;
    }

关于数组中对象的创建,和释放操作,如下所示:

    /*分配一个pair对象*/
    static bool make_pair(Pair_handle_t *pair, const char *key, const char *value)
    {
        Pair_handle_t newpair =(Pair_handle_t)malloc(sizeof(Pair_t));
        char *newstr = NULL;

        if(newpair == NULL)
            return false;
       
        newstr = (char *)malloc(strlen(key) + 1);
        if(newstr == NULL)
            return false;

        strcpy(newstr, key);
        newstr[strlen(key)] = '\0';
        newpair->key = newstr;
        newstr = NULL;

        newstr = (char *)malloc(strlen(value) + 1);
        if(newstr == NULL)
            return false;

        strcpy(newstr, value);
        newstr[strlen(value)] = '\0';
        newpair->value = newstr;
        newstr = NULL;
       
        (*pair) = newpair;
        return true;
    }

    /*释放一个对象pair*/
    static void delete_pair(Pair_handle_t *pair)
    {
        Pair_handle_t temp = NULL;
        if(*pair == NULL)
            return ;

        temp = *pair;
        free(temp->key);
        temp->key = NULL;
        free(temp->value);
        temp->value = NULL;

        free(temp);
        temp = NULL;
        *pair = NULL;
    }

数组元素的基本操作:

    /*完成数组对象的初始化操作*/
    static void Tabinital(HashEntry_t *tab, int size)
    {
        int i = 0;
        for(; i < size; ++ i)
        {
            tab[i].pair = NULL;
            tab[i].state = EMPTY;
        }   
    }

    static void delete_array(HashEntry_handle_t *array, int size)
    {
        int i = 0;

        if(*array != NULL)
        {
            for(i = 0; i < size; ++ i)
            {
                if((*array)[i].state == ACTIVE)
                {
                    delete_pair(&((*array)[i].pair));
                    (*array)[i].state = DELETED;
                }
            }
            free(*array);
            *array = NULL;
        }
    }

插入元素的操作、有两个函数的创建,其中一个为了便于后期大小的调整操作。

    /*插入数据到散列中,采用了二次探测的实现方式,并设置了退出条件*/
    static bool insert_data(Hashmap_handle_t hashmap,
        const char *key, const char *value, hashfunc func)
    {
        int hashval = func(key,hashmap->capacity);
        int index = 0;
        char * newstr = NULL;

        Pair_handle_t newpair = NULL;

        while(hashmap->map[hashval].state != EMPTY)
        {
            if((hashmap->map[hashval].state == ACTIVE)
            && (strcmp(hashmap->map[hashval].pair->key,key) == 0))
                break;

            index ++;
            hashval += index * index;
            hashval %= hashmap->capacity;
            if(index == 200)
                break;
        }
       
        if(hashmap->map[hashval].state == EMPTY)
        {
            if(make_pair(&newpair,key,value))
            {
                hashmap->map[hashval].state = ACTIVE;
                hashmap->map[hashval].pair = newpair;
                newpair = NULL;
                hashmap->size ++;
                return true;
            }
        }

        else if((hashmap->map[hashval].state == ACTIVE)
            && (strcmp(hashmap->map[hashval].pair->key, key) == 0))
        {
            newstr = (char *)malloc(strlen(value) + 1);
            if(newstr != NULL)
            {
                strcpy(newstr,value);
                newstr[strlen(value)] = '\0';
                free(hashmap->map[hashval].pair->value);
                hashmap->map[hashval].pair->value = newstr;
                newstr = NULL;

                return true;
            }
        }
        return false;
    }

    static bool insert2map(HashEntry_handle_t map,
        const char *key, const char *value,
        hashfunc func, int size)
    {
        int hashval = func(key,size);
        int index = 0;
        char *newstr = NULL;
        Pair_handle_t newpair = NULL;

        if(map != NULL)
        {
            while(map[hashval].state != EMPTY)
            {
                if((map[hashval].state == ACTIVE)
                && (strcmp(map[hashval].pair->key, key) == 0))
                    break;
               
                index ++;
                hashval += index * index;
                hashval %= size;
                /*防止死循环*/
                if(index == 200)
                    break;
            }
           
            if(map[hashval].state == EMPTY)
            {
                if(!make_pair(&newpair,key,value))
                    return false;
                map[hashval].pair = newpair;
                map[hashval].state = ACTIVE;
                newpair = NULL;
                return true;
            }
            else if((map[hashval].state == ACTIVE) &&
                (strcmp(map[hashval].pair->key, key) == 0))
            {
                newstr = (char *)malloc(strlen(value) +1);
                if(newstr != NULL)
                {
                    free(map[hashval].pair->value);
                    map[hashval].pair->value = NULL;
                    strcpy(newstr, value);
                    newstr[strlen(value)] = '\0';
                    map[hashval].pair->value = newstr;
                    return true;
                }
            }           
        }
        return false;
    }

调整大小和插入的实际操作。

 

    bool resize(Hashmap_handle_t hashmap)
    {
        int i = 0;
        HashEntry_handle_t newarray = NULL;   

        int size = next_prime(2*hashmap->capacity);

        if(hashmap != NULL)
        {
            newarray = (HashEntry_handle_t)malloc(sizeof(HashEntry_t)
                        *size);
            if(newarray == NULL)
                return false;

            /*这一步至关重要*/
            Tabinital(newarray, size);
            for(; i < hashmap->capacity ; ++ i)
            {
                if(hashmap->map[i].state == ACTIVE)
                {
                    if(!insert2map(newarray,
                        hashmap->map[i].pair->key,
                        hashmap->map[i].pair->value,
                        HashFunc, size))
                        return false;
                }
            }
            delete_array(&hashmap->map,hashmap->capacity);
            hashmap->map = newarray;
            hashmap->capacity = size;
            return true;
        }

        return false;
    }

    bool insert_hashnode(Hashmap_handle_t hashmap,
        const char *key, const char *value)
    {
        if(hashmap->size < hashmap->capacity)
        {
            if(insert_data(hashmap,key,value,HashFunc))
            {
                //hashmap->size ++;
            }
       
            return true;
        }
        else /*增加容量*/
        {
            if(!resize(hashmap))
                return false;

            if(insert_data(hashmap,key,value,HashFunc))
            {
                //hashmap->size ++;
            }
            return true;
        }
        return false;
    }

搜索操作

    static Pair_handle_t search_data(Hashmap_handle_t hashmap, const char *key, hashfunc func)
    {
        int hashval = func(key, hashmap->capacity);
        int index = 0;
       
        while(hashmap->map[hashval].state != EMPTY)
        {
            if((hashmap->map[hashval].state == ACTIVE)
            && (strcmp(hashmap->map[hashval].pair->key,key) == 0))
                break;

            index ++;
            hashval += index * index;
            hashval %= hashmap->capacity;
            if(index == 200)
                break;
        }

        if((hashmap->map[hashval].state == ACTIVE)
            && (strcmp(hashmap->map[hashval].pair->key, key) == 0))
        {
            return hashmap->map[hashval].pair;
        }
       
        return NULL;
    }

    Pair_handle_t search_hashnode(Hashmap_handle_t hashmap, const char * key)
    {
        return search_data(hashmap,key,HashFunc);
    }

删除操作

 

    static bool delete_node(Hashmap_handle_t hashmap,const char *key,hashfunc func)
    {
        int hashval = func(key, hashmap->capacity);
        int index = 0;
       
        /**********************************************
          *退出循环的条件是找到空闲的单元,或者关键字匹配
         *********************************************/
        while(hashmap->map[hashval].state != EMPTY)
        {
            if((hashmap->map[hashval].state == ACTIVE)
            && strcmp(hashmap->map[hashval].pair->key,key) == 0)
                break;

            index ++;
            hashval += index * index;
            hashval %= hashmap->capacity;
       
            if(index == 200)
                break;
        }

        /*判断删除条件*/
        if((hashmap->map[hashval].state == ACTIVE) &&
            (strcmp(hashmap->map[hashval].pair->key, key) == 0))
        {
            hashmap->map[hashval].state = DELETED;
            delete_pair(&(hashmap->map[hashval].pair));
            hashmap->map[hashval].pair = NULL;   
           
            return true;
        }

        return false;
    }

    bool delete_hashnode(Hashmap_handle_t hashmap, const char *key)
    {
        if(delete_node(hashmap, key, HashFunc))
        {
            hashmap->size --;
            return true;
        }

        return false;
    }

参数获取函数;

    int Length(Hashmap_t *map)
    {

        return map->size;
    }

    int Capacity(Hashmap_t *map)
    {
        return map->capacity;
    }

    void delete_hashmap(Hashmap_handle_t hashmap)
    {   
        int i = 0;
        int size = hashmap->capacity;

        if(hashmap != NULL)
        {
            for(; i < size; ++ i)   
            {
                if(hashmap->map[i].state == ACTIVE)
                {
                    delete_pair(&(hashmap->map[i].pair));
                    hashmap->map[i].state = DELETED;
                    hashmap->map[i].pair = NULL;
                    hashmap->size --;
                }
            }
            free(hashmap->map);
            hashmap->map = NULL;
        }
    }

    void free_hashmap(Hashmap_handle_t *hashmap)
    {
        delete_hashmap(*hashmap);
        free(*hashmap);
        *hashmap = NULL;
    }

    char *key_pair(Pair_handle_t pair)
    {
        if(pair != NULL)
        {
            return pair->key;
        }
        return NULL;
    }

    char *value_pair(Pair_handle_t pair)
    {
        if(pair != NULL)
        {
            return pair->value;
        }
        return NULL;
    }

    /*复制散列操作,相当于创建了一个新的散列对象,而不是指针复制*/
    Hashmap_handle_t copy_hashmap(Hashmap_handle_t hashmap)
    {
        Hashmap_handle_t newhashmap = NULL;
        int i = 0;
        if(hashmap == NULL)
            return NULL;
       
        /*采用动态分配的方式实现*/
        if(!alloc_hashmap(&newhashmap,hashmap->capacity))
            return NULL;
       
        for(; i < hashmap->capacity ; ++ i)
        {
            if(hashmap->map[i].state == ACTIVE)
            {
                /*得到当前中的值实现插入操作*/
                insert_hashnode(newhashmap,
                    hashmap->map[i].pair->key,
                    hashmap->map[i].pair->value);
            }
            else if(hashmap->map[i].state == DELETED)
            {
                newhashmap->map[i].state = DELETED;
            }
        }

        return newhashmap;
    }


测试函数:

    #include "hashmap.h"
    #include <time.h>

    #define CAPACITY    13

    char *keys[] = {
    "abcd",
    "defh",
    "abcd",
    "12345",
    "a1b2c3",
    "12345",
    "a1b2c3",
    "23456",
    "hijhk",
    "test1",
    "test1",
    "789123",
    "Input",
    };

    char *values[] = {
    "abcd",
    "defh",
    "abcd",
    "12345",
    "a1b2c3",
    "12345",
    "a1b2c3",
    "23456",
    "hijhk",
    "test1",
    "test1",
    "789123",
    "Input",
    };

    int myhashFunc(const char *key, int Tabsize)
    {
            int hashVal = 0;
            int i = 0;

            int len = strlen(key);
            for(; i < len ; ++ i )
                    hashVal += 37 *hashVal + key[i];
       
            hashVal %= Tabsize;

            if(hashVal < 0)
                    hashVal += Tabsize;

            return hashVal;
    }
     

    int main()
    {
        int i = 0;
        char str1[13];
        char str2[13];

        Hashmap_t mymap ;
        Hashmap_handle_t map = NULL;
        Hashmap_handle_t doubmap = NULL;
       
        Pair_handle_t pair;
        /*静态分配*/
        srand((int)time(0));

        printf("init and alloc test:\n");
        if(!init_hashmap(&mymap,13))
        {
            return false;
        }

        /*动态分配*/
        if(!alloc_hashmap(&map,13))
        {
            return false;
        }   
        printf("Sucessed!\n");
        /*插入测试*/
        printf("insert test:\n");
        for(i = 0; i < CAPACITY + 10; ++ i)
        {
            sprintf(str1,"%d%d",rand()%10+1,rand()%10+1);
            sprintf(str2,"%d%d",rand()%10+1,rand()%10+1);
           
            printf("%s->-f(%s)->%d->%s\n",str1,str1,
                myhashFunc(str1,CAPACITY),str2);

        //    sprintf(str1,"%s",keys[i]);
        //    sprintf(str2,"%s",values[i]);
            if(!insert_hashnode(&mymap,str1,str2))
            {
                printf("i = %d, insert to mymap failed\n", i);
                break;
            }
            if(!insert_hashnode(map,str1,str2))
            {
                printf("i = %d, insert to map failed\n", i);
                break;
            }
        }   
        printf("Sucessed!\n");
        /*查找测试*/
        printf("search test:\n");
        if((pair = search_hashnode(&mymap,str1)) != NULL)
        {
            printf("%s->%s\n",key_pair(pair),value_pair(pair));
        }
        if((pair = search_hashnode(map,str1)) != NULL)
        {
            printf("%s->%s\n",key_pair(pair),value_pair(pair));
        }
        printf("Sucessed!\n");
       
        /*delete*/
        printf("delete test:\n");
        if(delete_hashnode(&mymap,str1))
        {
            printf("Deleted success!!\n");
        }
        else
        {
            printf("Sorry, Failed!!\n");
        }
        if(delete_hashnode(map,str1))
        {
            printf("Deleted success!!\n");
        }
        else
        {
            printf("Sorry, Failed!!\n");
        }
       
        printf("Valid length : %d, Capacity : %d\n",
            Length(&mymap),Capacity(&mymap));
        printf("Valid length : %d, Capacity : %d\n",
            Length(map),Capacity(map));
       
        /*改变长度*/
        printf("resize test:\n");
        if(resize(&mymap))
            printf("Sucessed!\n");
        if(resize(map))   
            printf("Sucessed!\n");

        /*长度*/
        printf("Valid length : %d, Capacity : %d\n",
            Length(&mymap),Capacity(&mymap));
        printf("Valid length : %d, Capacity : %d\n",
            Length(map),Capacity(map));

        printf("Valid length : %d, Capacity : %d\n",
            Length(&mymap),Capacity(&mymap));
        printf("Valid length : %d, Capacity : %d\n",
            Length(map),Capacity(map));
       
        printf("copy test:\n");
        doubmap = copy_hashmap(&mymap);
        printf("Valid length : %d, Capacity : %d\n",
            Length(doubmap),Capacity(doubmap));
        printf("Sucessed!\n");
       
        /*释放内存*/
        printf("free test:\n");
        delete_hashmap(&mymap);
        free_hashmap(&map);
        free_hashmap(&doubmap);
        printf("Valid length : %d, Capacity : %d\n",
            Length(&mymap),Capacity(&mymap));
        printf("Sucessed!\n");
       
        return 0;
    }

测试结果:

    [gong@Gong-Computer newversion]$ ./main
    init and alloc test:

    insert test:
    48->-f(48)->4->49
    108->-f(108)->5->910
    78->-f(78)->1->98
    87->-f(87)->12->73
    36->-f(36)->3->109
    59->-f(59)->4->98
    32->-f(32)->12->48
    210->-f(210)->10->91
    105->-f(105)->2->22
    41->-f(41)->10->82
    1010->-f(1010)->11->69
    19->-f(19)->8->64
    25->-f(25)->3->45
    28->-f(28)->6->104
    16->-f(16)->5->83
    44->-f(44)->0->86
    85->-f(85)->10->72
    51->-f(51)->9->27
    54->-f(54)->12->57
    107->-f(107)->4->210
    73->-f(73)->9->27
    1010->-f(1010)->11->61
    63->-f(63)->10->63

    search test:
    63->63
    63->63

    delete test:
    Deleted
    Deleted
    Valid length : 21, Capacity : 29
    Valid length : 21, Capacity : 29
    resize test:


    Valid length : 21, Capacity : 59
    Valid length : 21, Capacity : 59
    Valid length : 21, Capacity : 59
    Valid length : 21, Capacity : 59
    copy test:
    Valid length : 21, Capacity : 59

    free test:
    Valid length : 0, Capacity : 59

从实验效果可知,基本上实现了散列的基本操作。

关闭窗口

相关文章