专注电子技术学习与研究
当前位置:单片机教程网 >> STM32 >> 浏览文章

STM32驱动无刷电机的相关定时器配置

作者:佚名   来源:本站原创   点击数:  更新时间:2014年04月10日   【字体:


#include "stm32f10x_lib.h"

TIM_TimeBaseInitTypeDef TIM1_TimeBaseInitStructure; //根据 TIM_TimeBaseInitStruct 中指定的参数初始化 TIMx 的时间基数单位
TIM_OCInitTypeDef TIM1_OCInitStructure; //根据 TIM_OCInitStruct 中指定的参数初始化外设 TIMx
TIM_BDTRInitTypeDef TIM1_BDTRInitStructure; //TIM1_BDTRInitStruct:指向结构 TIM1_BDTRInitTypeDef的指针,包含了TIM1的BDTR寄存器的配置信息
u16 capture = 0;
u16 CCR1_Val = 0x800; //这里原来是设置TIM1通道输出占空比的。原书中作者设置的三个值为0x7FFF,0x3FFF,0x1FFF,彻底错了
u16 CCR2_Val = 0x400;
u16 CCR3_Val = 0x200;
ErrorStatus HSEStartUpStatus;

void RCC_Configuration(void); //复位和时钟配置;
void GPIO_Configuration(void);//通用IO端口配置;
void NVIC_Configuration(void);//中断向量嵌套配置;

int main(void)
{
  #ifdef DEBUG
     debug();
  #endif

  RCC_Configuration();  //配置系统时钟;
  GPIO_Configuration();        //配置NVIC;
  NVIC_Configuration();        //配置GPIO;

  TIM_DeInit(TIM1);  //将外设 TIM1 寄存器重设为缺省值;
  TIM1_TimeBaseInitStructure.TIM_Prescaler = 0x0;//TIM1_Prescaler设置了用来作为 TIM1时钟频率除数的预分频值。它的取值必须在 0x0000 和0xFFFF 之间。
  TIM1_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;//TIM1_CounterMode 选择了计数器模式——向上计数;
  TIM1_TimeBaseInitStructure.TIM_Period = 0x1000;//TIM1_Period设置了在下一个更新事件装入活动的自动重装载寄存器周期的值——0xFFFF;
  //原书中值为0xFFFF,胡扯嘛,f=TIM1CLK/(TIM1_Period+1),如果TIM1的时钟频率为72MHz,则TIM1_Period应为4096左右,即0x1000。
  TIM1_TimeBaseInitStructure.TIM_ClockDivision = 0x0;//TIM1_ClockDivision 设置了时钟分割;
  TIM1_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
  TIM_TimeBaseInit(TIM1,&TIM1_TimeBaseInitStructure);//根据 TIM1_TIM1BaseInitStruct 中指定的参数初始化 TIM1 的时间基数单位
 
  TIM1_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;//TIM1_OCMode 选择定时器模式          
  TIM1_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //TIM1_OutputState选择输出比较状态
  TIM1_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //TIM1_OutputNState选择互补输出比较状态
  TIM1_OCInitStructure.TIM_Pulse = CCR1_Val; //TIM1_Pulse设置了待装入捕获比较寄存器的脉冲值——占空比为50%。
  TIM1_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //TIM1_OCPolarity输出极性高;
  TIM1_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High; //TIM1互补输出极性为高
  //原书中OCP和OCNP均设置为Low,看不出互补特性
  TIM1_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; //TIM1_OCIdleState选择空闲状态下的非工作状态(MOE=0时设置TIM1输出比较空闲状态)
  TIM1_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //MOE = 0时重置互补输出的输出比较空闲状态

  TIM_OC1Init(TIM1,&TIM1_OCInitStructure);
 
  TIM1_OCInitStructure.TIM_Pulse = CCR2_Val;  //设置通道2输出占空比为25%
  TIM_OC2Init(TIM1,&TIM1_OCInitStructure);

  TIM1_OCInitStructure.TIM_Pulse = CCR3_Val;  //设置通道3输出占空比为12.5%
  TIM_OC3Init(TIM1,&TIM1_OCInitStructure);

  TIM1_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;         //TIM_OSSRState 设置在运行模式下非工作状态选项
  TIM1_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;         //TIM_OSSIState 设置在运行模式下非工作状态选项
  TIM1_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;                 //TIM_LOCKLevel 设置了锁电平参数——锁电平1
  TIM1_BDTRInitStructure.TIM_DeadTime = 0x75;                    //死区时间1.625μs
  TIM1_BDTRInitStructure.TIM_Break = TIM_Break_Enable;                              //TIM1 刹车输入使能
  TIM1_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;  //TIM1 刹车输入管脚极性
  TIM1_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //TIM1_AutomaticOutput 自动输出使能

  TIM_BDTRConfig(TIM1,&TIM1_BDTRInitStructure); //设置刹车特性,死区时间,锁电平,OSSI,OSSR 状态和 AOE(自动输出使能)

  TIM_Cmd(TIM1,ENABLE);        //TIM1 使能

  TIM_CtrlPWMOutputs(TIM1,ENABLE);        //使能外设 TIM1 的主输出

  while(1)
  {
  }
}

void RCC_Configuration(void)
{
  RCC_DeInit();                                                              //将外设 RCC寄存器重设为缺省值
  RCC_HSEConfig(RCC_HSE_ON);                              //设置外部高速晶振(HSE)
  HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待 HSE 起振,该函数将等待直到 HSE 就绪,或者在超时的情况下退出
  if(HSEStartUpStatus == SUCCESS)                          //如果 HSE 就绪,则开始设置
  {
     RCC_HCLKConfig(RCC_SYSCLK_Div1);                  //设置 AHB 增强型高速总线的时钟(HCLK)
         RCC_PCLK2Config(RCC_HCLK_Div1);                  //设置高速 AHB 时钟(PCLK2)
         RCC_PCLK1Config(RCC_HCLK_Div2);                  //设置高速 AHB 时钟(PCLK1)
         FLASH_SetLatency(FLASH_Latency_2);              //设置代码延时值——两个延时周期
         FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //使能预先取指令缓存
         RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);   //设置 PLL 时钟源及倍频系数,外部HSE默认8MHz,倍频系数为9,则PLL时钟为72MHz
         RCC_PLLCmd(ENABLE);                                                                   //使能PLL
         while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)           //如果检查指定的 RCC 标志位设置——PLL未就绪,则循环等待
         {
         }

         RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //设置PLL时钟为系统时钟

         while(RCC_GetSYSCLKSource()!= 0x08)                //如果用作系统的时钟源不是PLL,则循环等待。
         {
         }
  }

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);//使能GPIOA GPIOB TIM1 外设时钟
}

void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11;  //选中引脚8、9、10、11
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                                                          //设置选中引脚的最高输出速率为50MHz
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;                                                                          //设置选中管脚的工作状态为复用推挽输出。
  GPIO_Init(GPIOA,&GPIO_InitStructure);                                                                                                  //根据 GPIO_InitStruct中指定的参数初始化外设 GPIOA 寄存器
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; //        GPIO_InitStruct中指定的参数未变,所以只改变需要改变的参数                  
  GPIO_Init(GPIOB,&GPIO_InitStructure);                                                                         //根据 GPIO_InitStruct中指定的参数初始化外设 GPIOB 寄存器
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;        //设置选中管脚的工作状态为输入浮空
  GPIO_Init(GPIOB,&GPIO_InitStructure);                                
}

void NVIC_Configuration(void)
{
  //NVIC_InitTypeDef NVIC_InitStructure;
 
  #ifdef VECT_TAB_RAM
     NVIC_SetVectorTable(NVIC_VectTab_RAM,0x0);
  #else
     NVIC_SetVectorTable(NVIC_VectTab_FLASH,0x0);
  #endif
}

#ifdef DEBUG

void assert_failed(u8 *file,u32 line)          //返回出错时的行列信息
{
}

#endif
 

关闭窗口

相关文章